动力输出系统(Power Take-Off, PTO)作为波浪能转换装置(Wave Energy Converter, WEC)的主要构件之一,对系统运动及能量转换至关重要。本文首先基于势流理论,运用特征函数展开法得到圆柱形浮体所在流域的速度势函数级数表达式,进而通过边界匹配法得到作垂荡运动浮子的附加质量、阻尼系数及波浪激励力的解析表达式。针对阻尼器特性,分别研究线性和非线性PTO阻尼作用下,浮子的运动及波能转换特性,重点研究了线性PTO作用下的过阻尼问题。计算结果表明,低速度指数的 PTO 系统对装置运动的影响主要体现在PTO 阻尼系数上,随着阻尼系数增大,波能装置的共振频率逐渐减小,但减小幅度很小;PTO 系统的非线性特性并不能改变浮子的最优转换效率,但是较大的速度指数能有效改善 PTO 系统的阻尼容量;在较低频和较高频时,通过解析算法得到的最优 PTO 阻尼系数会使得装置处于过阻尼工作状态,且在低频部分需要进行最优 PTO 修正的最高频率和在高频部分需要进行修正的最低频率均随着半径和吃水的增大而逐渐减小。
Abstract
As one of the main components, the PTO mechanism is very important to the motion and power conversion for the WECs. Based upon the potential flow theory, the series expression of velocity potential function of the basin where the cylindrical floating body is located is obtained by using the eigenfunction expansion method, and then the analytical expressions of additional mass, damping coefficient and wave exciting force of the floating body are obtained by the boundary matching method. According to the characteristics of the PTO damper, the motion and wave energy conversion characteristics of the float under the linear and nonlinear PTO damping are studied respectively, and the over-damping problem under the linear PTO damping is emphatically explored. The results show that the influence of PTO system with low velocity index on the motion of the device is mainly reflected in the PTO damping coefficient. With the increase of damping coefficient, the resonance frequency of the wave energy device decreases gradually, but the decrease amplitude is very small. The nonlinear characteristics of PTO system cannot change the optimal transfer efficiency of the float, but the large velocity index can effectively improve the damping capacity of PTO system. At lower and higher frequencies, the optimal PTO damping obtained by the analytic algorithm will make the device in an over-damped state. The highest frequency in the low frequency part and the lowest frequency in the high frequency part which need to be modified will gradually decrease with the increase of radius and draught.
关键词
波浪能 /
解析方法 /
非线性PTO /
过阻尼修正
{{custom_keyword}} /
Key words
wave energy conversion /
analytical solution /
nonlinear PTO /
over-damped modification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zhou Fengqi. Renewable energy development strategy in China[J]. Shanghai Electric Power, 2005, 6: 554-560.
[2] Falcao A F O. Wave energy utilization: A review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14: 899-918.
[3] Caraher S L, Chick J P, Mueller M A. Investigation of fluid film bearings for use in direct drive linear generators in submerged wave energy converters[C]//18th International Offshore Polar Engineering Conference, 2008. 409-16.
[4] Ciement A, Mccullen P, Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6: 405-431.
[5] 吴必军,盛松伟,张运秋,游亚戈. 复杂圆柱型波能装置能量转换特性研究[J]. 哈尔滨工程大学学报,2010, 31(8): 1023-1028.
[5] Wu Bijun, Shent Songwei, Zhang Yunqiu, You Yage. Wave power conversion characteristics of a complex vertical cylinder[J]. Journal of Harbin Engineering University, 2010, 31(8): 1023-1028.
[6] Jeremiah Pastor, Yucheng Liu. Frequency and time domain modeling and power output for a heaving point absorber wave energy converter[J]. International Journal of Energy and Environment, 2014, 5: 100-112.
[7] Goggins J, Finnegan F. Shape optimization of floating wave energy converters for a specified wave energy spectrum[J]. Renewable Energy, 2014, 71: 208-220.
[8] Mavrakos S A, Katsaounis G M. Effects of floaters' hydrodynamics on the performance of tightly moored wave energy converters[J]. IET Renewable Power Generation, 2010, 4: 531-544.
[9] Bachynski E E, Young Y L, Yeung R W. Analysis and optimization of a tethered wave energy converter in irregular waves[J]. Renewable Energy, 2012, 48: 133-145.
[10] Falnes J. Linear interaction including wave-energy extraction. Ocean waves and oscillating system[M], Cambridge: Cambridge University press, 2002.
[11] Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter[J]. International Journal of Engineering Science, 2005, 43(s 17-18), 1377-1387.
[12] Fitzgerald J, Bergdahl L. Including moorings in the assessment of a generic offshore wave energy converter: a frequency domain approach[J]. Marine Structures, 2008, 21(1), 23-46.
[13] Price A A E, Dent C J, Wallace A R. On the capture width of wave energy converters[J]. Applied Ocean Research, 2009, 31(4), 251-259.
[14] Sheng W N, Alcorn R, Lewis A. Optimizing power take-offs for maximizing wave energy conversions[C]//30th International Workshop on Water Waves and Floating Bodies, Bristol, UK, 2015.
[15] Sheng W N, Lewis A. Power take off optimization for maximizing energy conversion of wave-activated bodies[J]. IEEE Journal of Oceanic Engineering, 2016:1-12.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}