参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法

胡爱军,白泽瑞,赵军

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 45-52.

PDF(1777 KB)
PDF(1777 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 45-52.
论文

参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法

  • 胡爱军,白泽瑞,赵军
作者信息 +

Compound fault features separation method of rolling bearing based on parameter optimization VMD and 1.5 dimension spectrum

  • HU Aijun, BAI Zerui, ZHAO Jun
Author information +
文章历史 +

摘要

针对滚动轴承复合故障分离的问题,基于相关峭度具有突出故障冲击周期性的特点和1.5维谱抑制高斯白噪声、剔除非耦合谐波分量的优点,提出了参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离的方法。首先以轴承不同故障特征频率对应的周期计算得到的最大相关峭度为评价指标,通过相应的相关峭度图来实现VMD中参数选择以及最优分量的选取;然后对最优分量进行包络处理,并为减少冗余成分和噪声干扰,选择1.5维谱来对包络信号做进一步分析,以此来实现滚动轴承复合故障的有效分离。通过对轴承复合故障仿真及实验信号的分析证明了该方法的有效性。
关键词:滚动轴承;复合故障;相关峭度;VMD;1.5维谱

Abstract

Aiming at the problem of compound fault separation of rolling bearings, based on the correlation kurtosis has the characteristic of stressing the periodicity of fault shock and 1.5 dimension spectrum has the advantage of suppressing of Gauss white noise and eliminating uncoupled harmonic components, a method of feature separation for compound fault of rolling bearings based on parameter optimization VMD (Variational Mode Decomposition) and 1.5 dimension spectrum is proposed. Firstly, the maximum correlation kurtosis from the period corresponding to different fault characteristic frequencies of bearing is taken as the evaluation index, and the parameter and the optimal component selection in VMD are realized by the correlation kurtosis diagram. Then the optimal component is enveloped, and in order to reduce redundant components and noise interference, 1.5 dimension spectrum is selected for further analysis,so as to achieve effective separation of compound fault of rolling bearings. The validity of this method is proved by the simulative and measured signals of bearing compound faults.

关键词

滚动轴承 / 复合故障 / 相关峭度 / VMD / 1.5维谱

Key words

 rolling bearing / compound fault / correlation kurtosis / VMD / 1.5dimension spectrum

引用本文

导出引用
胡爱军,白泽瑞,赵军. 参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法[J]. 振动与冲击, 2020, 39(11): 45-52
HU Aijun, BAI Zerui, ZHAO Jun. Compound fault features separation method of rolling bearing based on parameter optimization VMD and 1.5 dimension spectrum[J]. Journal of Vibration and Shock, 2020, 39(11): 45-52

参考文献

[1]张可,周东华,柴毅.复合故障诊断技术综述[J].控制理论与应用,2015,32(9):1143-1157
ZHANG Ke, ZHOU Dong-hua, CHAI Yi.Reviewof multiple fault diagnosismethods[J].Controltheory&Applications,2015,32(9):1143-1157
[2]王晓冬,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究[J]. 振动工程学报,2010,23(4):438-444.
WANG Xiao-dong, HE Zheng-jia , ZI Yan-yang. Adaptive construction of multiwavelet and research oncomposite fault diagnosis of rolling bearing[J]. Journal of vibration engineering, 2010, 23(4):438-444.
[3]唐贵基,王晓龙. 最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J]. 振动与冲击,2015, 34(12): 79-84
TANG Gui-ji,WANG Xiao-long. Feature extraction for rolling bearing incipient fault based on maximum correlated kurtosis deconvolution and 1.5dimension spectrum[J]. Journal of vibration and shock,2015, 34(12): 79-84
[4]明安波,褚福磊,张炜.滚动轴承复合故障特征分离的小波-频谱自相关方法[J].机械工程学报,2013,49(3):80-87.
Ming An-bo,Chu Fu-lei,Zhang Wei.Compound fault features separation of rolling element bearing based on the wavelet decomposition and spectrum auto-correlation[J].Journal of Mechanical Engineering,2013,49(3):80-87.
[5]马新娜,杨绍普.滚动轴承复合故障诊断的自适应方法研究[J]. 振动与冲击,2016, 35(10): 145-150.
MA Xin-na, YANG Shao-pu. Adaptive compound fault diagnosis of rolling bearings[J]. Journal of vibration and shock,2016, 35(10): 145-150.
[6]陈安华,莫志军,蒋玲莉,等.基于复杂网络社团聚类的复合故障特征分离诊断方法[J]. 振动与冲击,2016, 35(7): 76-81.
CHEN An-hua,MO Zhi-jun,JIANG LING-li. Composite fault features separation diagnosis method based on complex networks organization clustering[J]. Journal of vibration and shock,2016, 35(7): 76-81
[7]张晓涛,唐力伟,王平,等.最小周期相关熵解卷积结合窄带解调的轴承复合故障诊断研究[J]. 振动工程学报,2015,28(4):666-672.
ZHANG Xiao-tao,TANG Li-wei,WANG Ping,et al. The research  of bearing multi-fault diagnosis based on mimimum period correlated entropy deconvolution and narrowband demodulation[J]. Journal of Mechanical Engineering,2015,28(4):666-672.
[8]钟先友,赵春华,陈宝家,等.基于MCKD和重分配小波尺度谱的旋转机械复合故障诊断研究[J]. 振动与冲击,2015, 34(7): 156-161.
ZHONG Xian-you,ZHAO Chun-hua,CHEN Bao-jia,et al.Rotating machinery fault diagnosis based on maximum correlation kurtosis deconvolution and reassigned wavelet scalogarm[J]. Journal of vibration and shock,2015, 34(7): 156-161
[9] Mcdonald G L.Zhao Q,Zuo M J,Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing,2012,
    33(1):237-355.
[10]DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544
[11]王晓龙,唐贵基.基于变分模态分解和1.5 维谱的滚动轴承故障诊断[J].电力自动化设备,2016,36(7):125-130.
WANG Xiao-long,TANG Gui-ji. Incipient bearing fault diagnosis based on VMD and 1.5-dimension spectrum[J]. Electric Power Automation Equipment,2016,36(7):125-130.
[12] Antoni J.Fast computation of the kurtogram for the detection of transient faults[J].Mechanical Systems and Signal Processing,2007,21(1):108-124.
[13]陈略,紫艳阳,何正嘉,等. 总体平均经验模式分解与1.5 维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98.
CHEN Lue,ZI Yan-yang,HE Zheng-jia,et al. Research andapplication of ensemble empirical mode decomposition principleand 1.5 dimension spectrum method[J]Journal of  Xi’an JiaotongUniversity,2009,43(5),94-98
[14]WANG Y,MARKERT R. Filter bank property of variational
mode decomposition and its applications[J]. SignalProcessing,2016(120):509-521.
[15]唐贵基,王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断上的应用[J]. 振动工程学报,2016, 29(4): 638-648
TANG Gui-ji,WANG Xiao-long.. Variational mode decomposition method and its application on incipent fault diagnosis of rolling bearing[J]. Journal of Mechanical Engineering, 2016, 29(4): 638-648.

PDF(1777 KB)

554

Accesses

0

Citation

Detail

段落导航
相关文章

/