粘弹夹层结构被广泛应用于机械设备的减振、降噪等方面,但在长期储存、运输和使用过程中,粘弹性材料会出现老化现象,致使粘弹夹层结构的服役性能退化,从而影响整个机械设备的性能和使用安全。因此,研究粘弹夹层结构的老化状态识别方法是工程实际的迫切需要。本文设计了粘弹夹层结构的实验装置,通过粘弹性材料的热氧加速老化实验获得了不同老化程度的试样,通过粘弹性材料的力学性能测试试验获得了不同老化程度下的性能指标;采用三维建模—导入—前处理方法建立了粘弹夹层结构的有限元模型,使用输入粘弹性材料不同参数的方式达成了等效模型不同老化状态的目的,完成了不同老化下结构的模态分析,建立了老化状态变化和固有频率变化之间的对应关系;通过脉冲激励实验验证了有限元模型的有效性。研究结果表明,本文建立的粘弹夹层结构的有限元模型能够反映其老化状态特性及其变化,可为其老化状态识别提供理论基础和先验知识。
Abstract
Viscoelastic sandwich structure is widely used in sealing, vibration damping and noise reduction of mechanical equipment. However, viscoelastic material may appear aging phenomena in the process of long time storage, transportation and usage. The aging of viscoelastic material will result in the service performance degradation of viscoelastic sandwich structure, thus affect the performance and safe for use of whole mechanical equipment. Therefore, it is greatly required of the engineering practice to research the aging state recognition method of viscoelastic sandwich structure. In this paper, the experimental device of typical viscoelastic sandwich structure is designed. The hot oxygen accelerated aging experiment of viscoelastic material is accomplished, and the specimens with different aging degrees are obtained. The mechanical property test of viscoelastic material is implemented, and the performance indexes under different aging degrees are obtained. By the 3D modeling-importing-preprocessing method, the finite element model of viscoelastic sandwich structure is established. By importing the different parameters of viscoelastic material, the purpose of equivalent models with different aging states is reached. The finite element analysis of viscoelastic sandwich structure under different aging states is carried out, and the corresponding relations between aging state changes and natural frequency changes are built. Through impulse excitation experiment, the effectiveness of finite element model is verified. The research results show that the established finite element model of viscoelastic sandwich structure can reflect the structural aging state characteristics and its change, and can provide theoretical foundation and prior knowledge for the structural aging recognition.
关键词
粘弹夹层结构 /
有限元模型 /
模态分析 /
老化状态特性
{{custom_keyword}} /
Key words
viscoelastic sandwich structure /
finite element modeling /
modal analysis /
aging status characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄志诚, 秦朝烨, 褚福磊. 附加粘弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014, 33(7): 105-113.
HUANG Zhicheng, QIN Zhaoye, CHU Fulei. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of Vibration and Shock, 2014, 33(7): 105-113.
[2] Qu Jinxiu, Zhang Zhousuo, Wen Jinpeng, et al. State recognition of the viscoelastic sandwich structure based on the adaptive redundant second generation wavelet packet transform, permutation entropy and the wavelet support vector machine[J]. Smart Materials and Structures, 2014.8, 23(8): 085004.
[3] 刘文光, 阎美智, 于维欣, 等. 黏弹性阻尼器减震结构基于位移减震域的设计方法[J]. 振动与冲击, 2018, 37(13): 35-42.
LIU Wenguang, YAN Meizhi, YU Weixin, et al. Design method based on displacement damping region for viscoelastic damper-added structures[J]. Journal of Vibration and Shock, 2018, 37(13): 35-42.
[4] Sun C, Zhang ZS, Luo X, et al. Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing[J]. Journal of Sound and Vibration, 2016, 368: 249-263.
[5] Qu JX, Zhang ZS, Luo X, et al. A novel method to aging state recognition of viscoelastic sandwich structures[J]. Steel and Composite Structures, 2016, 21(6): 1183-1210.
[6] Guo YF, Zhang ZS, Cao JB, et al. An optimized variational mode decomposition for extracting weak feature of viscoelastic sandwich cylindrical structures[J]. Measurement Science and Technology, 2018, 29(3): 035006.
[7] 黄志诚, 秦朝烨, 褚福磊. 基于剪切耗能假设的黏弹性夹芯梁的振动和阻尼特性[J]. 振动与冲击, 2015, 34(7): 183-191.
HUANG Zhicheng, QIN Zhaoye, CHU Fulei. Vibration and damping characteristics analysis of viscoelastic sandwich beams based on the shear dissipating energy assumption [J]. Journal of Vibration and Shock, 2015, 34(7): 183-191.
[8] Akoussan K, Boudaoud H, El-Mostafa D, et al. Vibration modeling of multilayer composite structures with viscoelastic layers[J]. Mechanics of Advanced Materials and Structures, 2015, 22 (1-2): 136-149.
[9] 周航, 校金友, 徐超. 考虑频变阻尼的黏弹性阻尼层板结构模态分析方法[J]. 振动与冲击, 2018, 37(14): 208-213+253.
ZHOU Hang, XIAO Jinyou, XU Chao. Modal analysis method for viscoelastically damped laminated structures with frequency-dependent damping[J]. Journal of Vibration and Shock, 2018, 37(14): 208-213+253.
[10] Filippi M, Carrera E, Valvano S. Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements[J]. Composites Part B: Engineering, 2018, 154: 77-89.
[11] GB/T3512-2014. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验[S]. 北京: 中国标准出版社, 2014.
[12] GB/T528-2009, 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S]. 北京: 中国标准出版社, 2009.
[13] GB/T7757-2009,硫化橡胶或热塑性橡胶压缩应力应变性能的测定[S]. 北京: 中国标准出版社, 2009.
[14] 李兵, 何正嘉, 陈雪峰. ANSYS Workbench设计、仿真与优化(第2版)[M]. 北京: 清华大学出版社, 2011.
[15] 李洪奎, 李岩. 不同预紧力下变压器绕组轴向振动模态分析[J]. 电机与控制学报, 2010, 14(8): 98-101+106.
LI Hongkui, LI Yan. Axial vibration modal analysis of transformer windings under different levels of pre-compression[J]. Electric Machines and Control, 2010, 14(8): 98-101+106.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}