单斜面索拱支承曲梁人行桥人致振动控制研究

罗晓群,张晋,沈昭,张其林,刘沈如

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 83-92.

PDF(2501 KB)
PDF(2501 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 83-92.
论文

单斜面索拱支承曲梁人行桥人致振动控制研究

  • 罗晓群,张晋,沈昭,张其林,刘沈如
作者信息 +

Human-induced vibration control of curved beam footbridge with single inclined cable arch

  • LUO Xiaoqun, ZHANG Jin, SHEN Zhao, ZHANG Qilin, LIU Shenru
Author information +
文章历史 +

摘要

进行了一种单斜面索拱支承曲梁人行桥的人致振动控制研究。在人行桥的初始状态及静动力特性基础上,模拟了随机人群荷载作用下人行桥的振动响应,参数化地研究了调谐质量阻尼器(tuned mass damper,简称TMD)的减振作用,考虑了TMD不同质量比、刚度、阻尼参数以及布置方式的影响。在TMD装置安装前后对人行桥进行实地动力测试,测试了结构减振前后的模态特性以及在单人、多人和人群荷载工况下的振动响应,讨论了TMD装置对该类型人行桥的减振效果。结果表明:减振后结构关键模态阻尼增大为减振前的4.14倍;单人步行和跑动工况下,通过设置TMD,结构加速度峰值下降31.1%~55.9%,加速度均方根下降36.4%~52.0%;多种人群步行工况下,结构竖向加速度峰值最大为0.41m/s2。研究结果表明单斜面索拱支承曲梁人行桥刚度较柔,TMD对控制该类型人行桥结构人致振动具有很好的效果。

Abstract

Human-induced vibration control of a curved beam footbridge with single inclined cable arch was studied. Based on the shape finding and static/dynamic analysis of the footbridge, the vibration response of the footbridge under stochastic crowd load was simulated. The effect on controlling vibration through tuned mass dampers (TMDs) was studied parametrically, considering effects of mass ratio, stiffness, damping parameters and layout modes. The dynamic field measurement of the footbridge was carried out with and without TMDs. The modal characteristics and vibration response under single-pedestrian, multi-pedestrian and crowd loads were tested. The performance upgrading for vibration control with TMDs on the footbridge was evaluated. The results show that the key modal damping of the structure with TMDs was 4.59 times as much as that without TMDs; the peak acceleration of the structure decreased 31.1%~55.9% and the acceleration root mean square (RMS) value decreased 36.4%~52.0% under single person walking and running conditions; the vertical acceleration peak of the structure reduced to 0.41m/s2 under various crowd load conditions. The research results show that this kind of curved beam footbridge supported with single inclined cable arch is flexible and human-induced vibration is hard to control by increasing the structure stiffness. By setting TMDs gives a good performance on human induced vibration control on such flexible footbridge.

关键词

人行桥 / 随机人群荷载 / 调谐质量阻尼器 / 现场实测

Key words

 footbridge / stochastic crowd load / tuned mass damper / field measurement

引用本文

导出引用
罗晓群,张晋,沈昭,张其林,刘沈如. 单斜面索拱支承曲梁人行桥人致振动控制研究[J]. 振动与冲击, 2020, 39(11): 83-92
LUO Xiaoqun, ZHANG Jin, SHEN Zhao, ZHANG Qilin, LIU Shenru. Human-induced vibration control of curved beam footbridge with single inclined cable arch[J]. Journal of Vibration and Shock, 2020, 39(11): 83-92

参考文献

[1] Harper F.C. The mechanics of walking [J]. Research Applied in Industry, 1962, 15(I): 23-28.
[2] Andriacchi T P, Ogle J A, Galante J O. Walking speed as a basis for normal and abnormal gait measurements [J]. Journal of Biomechanics, 1977, 10(4): 261-268.
[3] Bachmann H, Pretlove A J, Rainer H. Dynamic forces from rhythmical human body motion in: Vibration Problem in Structures: Practical Guidelines [M], Basel, Birkhauser Verlag, 1995.
[4] 孙利民, 闫兴非. 人行桥人行激励振动及设计方法[J]. 同济大学学报(自然科学版), 2004, 32(8): 996-999.
 Sun L M, Yan X F. Human walking induced footbridge vibration and its serviceability design. Journal of Tongji University(Natural Science) [J], 2004, 32(8): 996-999.
[5] Matsumoto Y, Nishioka T, Shiojiri H, et al. Dynamic design of footbridges [J]. Proceedings of the International Association for Bridge and Structural Engineering, 1978, 2(17): 1-15.
[6] Dallard P, Fitzpatrick T, Flint A, et al. The London millennium footbridge [J]. Structural Engineer, 2001, 79(171): 17-33.
[7] 陈政清, 华旭刚. 人行桥的振动与动力设计[M]. 北京: 人民交通出版社, 2009.
 Chen Z Q, Hua X G. Vibration and dynamic design of footbridges [M]. Beijing: China Communications Press, 2009.
[8] 操礼林. 高铁候车厅大跨楼盖人致振动响应分析与减振控制研究[D]. 南京: 东南大学, 2016.
 Cao L L. Research on human-induced vibration response and vibration control of long-span floor in high-speed railway waiting hall [D]. Nanjing: Southeast University, 2016.
[9] ISO10137, Bases for Design of Structures–Serviceability of Buildings Against Vibrations [S]. Switzerland: International Standardization Organization, 2007.
[10] BRO 2004, Publikation 2004:56: Vägverkets allmänna tekniska beskrivning för nybyggande och förbättring av broar [S]. Sverige: Svensk Byggtjänst, 2004.
[11] RFS2-CT-2007-00033, Human induced Vibrations of Steel Structures: Design of Footbridges—Guideline EN03 [S]. German: Research Fund for Coal&Steel 2008.
[12] 中华人民共和国住房和城乡建设部标准定额司.行业标准《城市人行天桥与人行地道技术规范(征求意见稿)》. http://www.mohurd.gov.cn/zqyj/201705/t20170531_232042.html, 2017.
[13] 王立彬, 苏骥, 刘康安, 等. TMD对人行天桥的振动控制研究[J]. 公路工程, 2013, 38(4): 242-245.
 Wang L B, Su J, Liu A K, et al. Research on the vibration control for pedestrian bridge with TMD [J]. Highway Engineering, 2013, 38(4): 242-245.
[14] 李晓玮, 何斌, 施卫星. TMD减振系统在人行桥结构中的应用[J]. 土木工程学报, 2013, 46(s1): 245-250.
 Li X W, He B, Shi W X. Application of TMD seismic vibration control system in the bridge structures [J]. China Civil Engineering Journal. 2013, 46(s1): 245-250.
[15] Setareh M, Gan S Q. Vibration testing, analysis, and human-structure interaction studies of a slender footbridge [J]. ASCE Journal of Performance of Constructed Facilities, 2018, 32(5): 04018068.
[16] 汪志昊, 华旭刚, 陈政清, 等. 基于微型永电磁式涡流阻尼TMD的人行桥模型减振试验研究[J]. 振动与冲击, 2014, 33(20): 129-132.
 Wang Z H, Hua X G, Chen Z Q, et al. Experimental study on vibration control of a model footbridge bya tiny eddy-current tuned mass damper with permanent magnets [J]. Journal of Vibration and Shock, 2014, 33(20): 129-132.
[17] Den Hartog A J. Mechanical vibration [M]. New York: McGraw-Hill, 1956.
[18] Jiménez-Alonso J F, Sáez A. Robust optimum design of tuned mass dampers to mitigate pedestrian-induced vibrations using multi-objective genetic algorithms [J]. Structural Engineering International, 2017, 27(4): 495-501.
[19] Shi W X, Wang L K, Lu Z, et al. Application of an artificial fish swarm algorithm in an optimum tuned mass damper design for a pedestrian bridge [J]. Applied Sciences, 2018, 8(2): 175.
[20] Villaverde R. Reduction in seismic response with heavily-damped vibration absorbers [J]. Earthquake Engineering & Structural Dynamics, 1985, 13(1): 33-42.
[21] 王洪涛, 施卫星, 韩建平, 等. 钢连桥人致振动及TMD减振效应实测与分析[J]. 振动、测试与诊断, 2016, 36(3): 505-511.
 Wang H T, Shi W X, Han J P, et al. Analysis and in-situ test of human-induced vibration for the steel footbridge with and without TMD devices [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(3): 505-511.
[22] 法永生, 李东, 孙翠华. 人行桥随机人行荷载下的振动分析及其舒适度评价的新方法[J]. 振动与冲击, 2008, 27(1): 119-123.
 Fa Y S, Li D, Sun C H,. Vibration analysis for a footbridge under stochastic pedestrian load and a new method for comfort evaluation [J]. Journal of Vibration and Shock, 2008, 27(1): 119-123.
[23] BS5400, Steel, concrete and composite bridges: specification for loads: Part 2, Appendix C. London: British Standards Association, 1978.
[24] EN 1990:2002/A1:2005, Eurocode-Basis of structural design: Application for bridges. Brussels: European Committee for Standardization, 2005.
[25] CHEN G,WANG Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components [J]. Mechanical Systems and Signal Processing, 2012, 28(2): 258-279.
[26] 高延安, 杨庆山. 行走人群-结构相互作用模型研究[J]. 振动与冲击, 2016, 35(23): 153-159.
 Gao Y N, Yang Q S. A walking crowd-structure interaction model [J]. Journal of Vibration and Shock, 2016, 35(23): 153-159.
[27] 谢旭, 钟婧如, 张鹤, 等. 人-桥竖向耦合振动计算方法[J]. 振动与冲击, 2016, 35(5): 108-114.
 Xie X, Zhong J R, Zhang H, et al. Calculation method for human-bridge vertically coupled vibration [J]. Journal of Vibration and Shock, 2016, 35(5): 108-114.

PDF(2501 KB)

Accesses

Citation

Detail

段落导航
相关文章

/