铝蜂窝在压-剪组合荷载作用下的力学特性研究

杨辉1,刘亚红1,侯秀慧2,尹冠生1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 121-128.

PDF(2237 KB)
PDF(2237 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 121-128.
论文

铝蜂窝在压-剪组合荷载作用下的力学特性研究

  • 杨辉1,刘亚红1,侯秀慧2,尹冠生1
作者信息 +

A study on the mechanical properties of aluminum honeycomb under combined shear-compression loading

  • YANG Hui1,LIU Yahong1,HOU Xiuhui2,YIN Guansheng1
Author information +
文章历史 +

摘要

对铝蜂窝在压-剪组合荷载作用下的变形特征进行试验研究,并基于文中试验建立铝蜂窝数值计算模型,分析各参数对铝蜂窝在压-剪组合荷载作用下力学行为的影响。结果表明:在TL面内加载时,蜂窝变形逐渐由只在一端(加载端)变形过渡到同时在两端(加载端和非加载端)变形。在TW面加载时,蜂窝主要在一端(加载端)产生变形,并且更容易出现脱胶破坏;蜂窝峰值荷载、平均荷载以及比能与l/t值呈负相关关系。l/t值相同时,单元边长l、单元壁厚t越小,则蜂窝平均荷载和比能越大。单元边长l对蜂窝平均荷载的影响要大于单元壁厚t对平均荷载的影响;增大蜂窝高度会降低结构吸能效率。

Abstract

The deformation characteristics of aluminium honeycomb under combined compression-shear loads were studied by experiment. The numerical models of aluminium honeycomb were established based on the experiment to analyze the influence of parameters for the mechanical behaviors of aluminium honeycomb under combined compression-shear loads. The results show that the deformation of aluminum honeycomb gradually changes from one end (loading end) to two ends (loading end and non-loading end) when loaded at TL plane. When loaded at TW plane, the deformation of honeycomb occurs at one end (loading end), and the debondings are more likely to occur during the loading process. The peak load, average load and specific energy of honeycomb are negatively correlated with the value of l/t under combined compression-shear loads. If the values of l/t of honeycombs are the same, the smaller the length l and the wall thickness t are, the larger the average load and specific energy of the honeycomb are. The change of length l has greater effects on the average load of honeycomb than the change of wall thickness t. Increasing the height of honeycomb will reduce the energy absorption efficiency.

关键词

铝蜂窝 / 组合荷载 / 数值分析 / 力学响应

Key words

aluminum honeycomb / combined loads / numerical analysis / mechanical response

引用本文

导出引用
杨辉1,刘亚红1,侯秀慧2,尹冠生1. 铝蜂窝在压-剪组合荷载作用下的力学特性研究[J]. 振动与冲击, 2020, 39(12): 121-128
YANG Hui1,LIU Yahong1,HOU Xiuhui2,YIN Guansheng1. A study on the mechanical properties of aluminum honeycomb under combined shear-compression loading[J]. Journal of Vibration and Shock, 2020, 39(12): 121-128

参考文献

[1] 赵国伟, 白俊青, 祁玉峰, 等. 异面冲击下金属蜂窝结构平均塑性坍塌应力模型[J]. 振动与冲击, 2016, 35(12): 50-54.
 ZHAO Guo-wei, BAI Jun-qing, QI Yu-feng, et al. Average plastic collapse stress model of metallic honeycomb structure under out of plan impact load[J]. Journal of Vibration and Shock, 2016, 35(12): 50-54.
[2] 何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究[J]. 工程力学, 2015, 32(4): 191-196.
 HE Qiang, MA Da-wei, ZHANG Zhen-dong. Research on dynamic crushing of layered yielding stress-gradient circular honeycombs[J]. Engineering Mechanics. 2015, 32(4): 191-196.
[3] 蔡茂, 高群, 宗志坚. 铝合金蜂窝结构轴向压缩吸能特性[J]. 材料科学与工程学报, 2015, 33(5): 675-679.
 CAI Mao, GAO Qun, ZONG Zhi-jian. Energy absorption properties of honeycomb structured aluminum under axial compression[J]. Journal of Materials Science & Engineering. 2015, 33(5): 675-679.
[4] Ashab A, Ruan D, Lu G X, et al. Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation[J]. Materials & Design, 2015, 74: 138-149.
[5] 徐天娇. 六边形铝蜂窝力学行为的尺寸效应研究[D]. 太原: 太原理工大学, 2013.
 XU Tian-jiao. Analysis of size effects in mechanical behavlor of hexagonal honeycombs[D]. Taiyuan: Taiyuan University of Technology, 2013.
[6] 徐天娇, 金涛, 周志伟, 等. 铝蜂窝面外压缩行为的尺寸效应研究[J]. 科学技术与工程, 2013, 13(14): 3829-3833.
 XU Tian-jiao, JIN Tao, ZHOU Zhi-wei, et al. Size effects in the out-of-plane mechanical behavior of hexagonal honeycombs[J]. Science Technology and Engineering, 2013, 13(14): 3829-3833.
[7] Xu S, Beynon J H, Ruan D, et al. Strength enhancement of aluminium honeycombs caused by entrapped air underdynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47(4): 1-13.
[8] 谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响[J]. 爆炸与冲击, 2015, 35(1): 16-21.
 TAN Si-bo, HOU Bing, LI Yu-long, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion and Shock Waves, 2015, 35(1): 16-21.
[9] 王中钢, 鲁寨军. 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报(自然科学版), 2013, 44(3): 1246-1251.
 WANG Zhong-gang, LU Zhai-jun. Experimental assessment on energy absorption property of aluminum honeycomb under out-of-plane compression[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1246-1251.
[10] Hou B, Zhao H, Pattofatto S, et al. Inertia effects on the progressive crushing of aluminium honeycombs under impact loading[J]. International Journal of Solids & Structures, 2012, 49(19-20): 2754-2762.
[11] 胡玲玲, 余同希. 惯性效应对蜂窝能量吸收性能的影响[J]. 兵工学报, 2009, 30(s2): 24-27.
 HU Ling-ling, YU Tong-xi. Influence of inertia effect on the energy absorption of hexagonal honeycombs[J]. Acta Armamentarii, 2009, 30(s2): 24-27.
[12] Wang Z G, Tian H Q, Lu Z J, et al. High-speed axial impact of aluminum honeycomb-Experiments and simulations[J]. Composites Part B Engineering, 2014, 56(1): 1-8.
[13] 刘强, 莫正伟. 铝蜂窝填充CFRP结构的弯曲性能研究[J]. 玻璃钢/复合材料, 2016(7): 48-52.
 LIU Qiang, MO Zheng-wei. Experimental and numerical investition of the bending characteristics of CFRP square tube filled with aluminum honeycomb[J]. Fiber Reinforced Plastics/Composites, 2016(7): 48-52.
[14] Tao Y , Duan S Y, Wen W B, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs[J]. Composites Part B Engineering, 2017, 118: 33-40.
[15] Yang X F, Sun Y X, Yang J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125:1-11.
[16] 李翔城, 林玉亮, 卢芳云. 组合式铝蜂窝低速冲击响应特性实验研究[J]. 北京理工大学学报, 2018, 38(2): 137-142.
 LI Xiang-cheng, LIN Yu-liang, LU Fang-yun. Experimental study on low-speed dynamic response of combined aluminum honeycomb[J]. Transactions of Beijing Institute of Technology. 2018, 38(2): 137-142.
[17] 李萌, 刘荣强, 罗昌杰, 等. 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32(9): 50-56.
 LI Meng, LIU Rong-qiang, LUO Chang-jie, et al. Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32(9): 50-56.
[18] 王中钢, 姚松. 加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化[J]. 航空材料学报, 2013, 33(3): 86-91.
 WANG Zhong-gang, YAO Song. Out-of-plane mechanical properties and thickness matching optimization between rib and cell thin-Wall of reinforced regular hexagon aluminum honeycomb[J]. Journal of Aeronautical Materials, 2013, 33(3): 86-91.
[19] 张绍云, 储火, 卢富德, 等. 蜂窝-泡沫缓冲系统动力学有限元分析[J]. 振动与冲击, 2014, 33(2):52-54.
 ZHANG Shao-yun, CHU Huo, LU Fu-de, et al. Finite element analysis for dynamic response of cushioning system made out of honeycomb paperboard and foam[J]. Journal of Vibration and Shock, 2014, 33(2):52-54.
[20] 杨辉,尹冠生,李轩, 等. 金属点阵格栅三明治结构低速冲击响应分析[J]. 塑性工程学报,2018,25(4): 245-253.
 YANG Hui, YIN Guan-sheng, LI Xuan, et al. Analysis on response of metal lattice sandwich structures under low velocity impact[J]. Journal of Plasticity Engineering, 2018,25(4): 245-253.
[21] 任鹏, 张伟, 刘建华, 等. 水下冲击波作用的铝合金蜂窝夹层板动力学响应研究[J]. 振动与冲击, 2016, 35(2):7-11.
 RENG Peng, ZHANG Wei, LIU Jian-hua, et al. Dynamic analysis of aluminium alloy honeycomb core sandwich panels subjected to underwater shock loading[J]. Journal of Vibration and Shock, 2016, 35(2): 7-11.
[22] 孙光永, 张敬涛, 李世强, 等. 爆炸载荷下层级蜂窝铝夹芯板的动力响应分析[J]. 华南理工大学学报 (自然科学版), 2017, 45(5): 141-146.
 SONG Guang-yong, ZHANG Jing-tao, LI Shi-qiang, et al. Dynamic response analysis of hierarchical aluminum honeycomb sandwich structure subjected to explosive load. Journal of South China University of Technology(Natural Science Edition), 2017, 45(5): 141-146.
[23] Hong S T, Pan J, Tyan T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J]. International Journal of Plasticity, 2006, 22(1): 73-109.
[24] Hong S T, Pan J, Tyan T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads[J]. International Journal of Plasticity, 2008, 24(1): 89-117.
[25] Hou B, Pattofatto S, Li Y L, et al. Impact behavior of honeycombs under combined shear-compression. Part II: Analysis[J]. International Journal of Solids and Structures, 2011, 48(5): 698-705.
[26] Hou B, Ono A, Abdennadher S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: Experiments[J]. International Journal of Solids & Structures, 2011, 48(5): 687-697.
[27] Zhou Z W, Wang Z H, Zhao L M, et al. Experimental investigation on the yield behavior of Nomex honeycombs under combined shear-compression[J]. Latin American Journal of Solids and Structures, 2012,9: 515-530.
[28] Wang Z G, Liu J F, Hui D. Mechanical behaviors of inclined cell honeycomb structure subjected to compression[J]. Composites Part B Engineering, 2017, 110: 307-314.
[29] Ashab A, Ruan D, Lu G X, et al. Combined Compression-Shear Behavior of Aluminum Honeycombs[C]. Key Engineering Materials, 2015.
[30] 周志伟, 王志华, 赵隆茂, 等. 航空用芳纶纸蜂窝各向异性行为研究[J]. 实验力学, 2012, 27(4): 440-447.
 ZHOU Zhi-wei, WANG Zhi-hua, ZHAO Long-mao, et al. Anisotropic behaviors of nomex hoenycombs. Journal of Experimental Mechanics, 2012, 27(4): 440-447.
[31] 庄茁, 曲小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M].北京: 清华大学出版社, 2009.
 ZHUANG Zhuo, QU Xiao-chuan, LIAO Jian-hui, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009.

PDF(2237 KB)

Accesses

Citation

Detail

段落导航
相关文章

/