为了提高通气超空泡航行体在转弯运动过程中空泡和航行体的运动一致性,本文基于有限体积法和VOF多相流模型,采用动态网格技术对航行体转弯运动的空泡形态特性进行了非定常数值模拟研究。通过对航行体沾湿区域的分析,揭示了沾湿区域形成的原因,利用空化器对空泡轴线的定向效应,提出了合理改变侧滑角减缓沾湿区域出现的具体方法。通过分析侧滑角和侧滑角速度对航行体沾湿区域的影响,提出了超空泡航行体转弯运动过程中,在给定偏航角条件下避免出现沾湿区域的侧滑角和侧滑角速度的适用范围,为进一步研究超空泡航行体机动运动问题提供参考。
Abstract
To improve the consistency of the motion of the cavity and the vehicle during the turning motion of the ventilated supercavitating vehicle, the unsteady numerical simulation of the cavity morphology characteristics of the vehicle in the turning motion was carried out based on the finite volume method and the VOF multiphase flow model by using the dynamic grid technique. Based on the analysis of the wetted area of the vehicle, the reasons for the formation of the wetted area are revealed. The specific method of changing the side slip angle reasonably to slow down the occurrence of the wetted area is put forward by utilizing the orientation effect of the cavitator on the axis of the cavity. By analyzing the influence of sideslip angle and sideslip angular velocity on the wetted area of the vehicle, the application scope of sideslip angle and sideslip angular velocity to avoid the wetted area in the course of turning motion of supercavitating vehicle at given yaw angle is proposed, which provides a method reference for further research on the maneuvering motion of supercavitating vehicle.
关键词
超空泡航行体 /
转弯运动 /
沾湿区域 /
侧滑角
{{custom_keyword}} /
Key words
supercavitating vehicle /
turning motion /
wetted area /
sideslip angle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丛敏, 刘乐华. 德国BARRACUDA超空泡高速水下导弹的制导与控制[J]. 飞航导弹, 2007, 37(5): 38-43.
CONG Min, LIU Yue-hua. Guidance and Control of High-speed Supercavitation Underwater Missile of Germany[J]. Winged Missiles Journal, 2007, 37(5): 38-43.
[2] Karn A, Arndt R E A, Hong J. An Experimental Investigation into Supercavity Closure Mechanisms[J]. Journal of Fluid Mechanics, 2016, 789: 259-284.
[3] ZHOU J J, Yu K P, Min J X, et al. The Comparative Study of Ventilated Supercavity Shape in Water Tunnel and Infinite Flow Field[J]. Journal of Hydrodynamics, 2010, 22(5): 689-696.
[4] 周景军, 于开平. 空化器倾斜角对超空泡流影响的三维数值仿真研究[J]. 船舶力学, 2011, 15(1/2): 74-80.
ZHOU Jing-jun, YU Kai-ping. Three Dimensional Numerical Simulation on the Influence of Cavitator Inclination Angle to Supercavity Flow[J]. Journal of Ship Mechanics, 2011, 15(1/2): 74-80.
[5] Zhang G, Yu K P, Zhou J J. Numerical Research on Ventilated Supercavity Shape and Flow Structure in the Turning Motion[J]. Journal of Ship Mechanics, 2011, 15(12): 1335-1343.
[6] 张广, 于开平, 周景军等. 超空泡航行体转弯运动流体动力特性的数值研究[J]. 应用力学学报, 2012, 29(3): 278-283.
ZHANG Guang, YU Kai-ping, ZHOU Jing-jun, et al. Numerical Research on Hydrodynamic Characteristics of Supercavitating Vehicle in the Turning Motion[J]. Chinese Journal of Applied mechanics, 2012, 29(3): 278-283.
[7] 李振旺. 水下高速航行体机动运动非定常超空泡数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2013: 44-56.
LI Zhen-wang. Transient Numerical Study on Maneuverable Motion of High-speed Supercavitating Vehicles[D]. Harbin: Harbin Institute of Technology, 2013: 44-56.
[8] 王威, 王聪, 魏英杰. 超空泡航行体转弯运动多相流场特性[J]. 哈尔滨工业大学学报, 2018, 50(10): 124-129.
WANG Wei, WANG Cong WEI Ying-jie. Multiphase Flow Characteristics of Supercavitating Vehicle in the Tuning Motion [J]. Journal of Harbin Institute of Technology, 2018, 50(10): 124-129.
[9] Logvinovich G V. Hydrodynamics of flows with free boundaries[M]. Halsted Press, 1973.
[10] Wang W, Wang C, Wei Y J, et al. A study on the Wake Structure of the Double Vortex Tubes in a Ventilated Supercavity[J]. Journal of Mechanical Science and Technology. 2018, 32 (4): 1601~1611.
[11] 陈鑫.通气空泡流研究[D].上海:上海交通大学, 2006: 57-59.
CHEN Xin. An investigation of the ventilated cavitating flow[D]. Shanghai: Shanghai Jiaotong University, 2006: 57-59.
[12] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学[M]. 北京: 国防工业出版社, 2014.
ZHANG Yu-wen, YUAN Xu-long, DENG Fei. Fluid Dynamice of Supercavitating Underwater Vehicles[M]. Beijing: National Defense Industry Press, 2014.
[13] Paryshev E V. Approximate Mathematical Models in High-speed Hydrodynamics[J]. Journal of Engineering Mathematics, 2006, 55: 41-64.
[14] 邹望. 基于Logvinovich原理的通气超空泡理论及其数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 47-51.
ZOU Wang. The Oretical and Numerical Research on Ventilated Supercavitating Flows Based on Logvinovich’s principle[D]. Harbin: Harbin Institute of Technology, 2013: 47-51.
[15] 严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
YAN Wei-sheng. Torpedo navigation mechanics[M]. Xi’an: Northwest Polytechnic University Press, 2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}