一种新的有限域动力刚度改进连分式求解算法

高毅超1,刘昊2,唐欣薇3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 164-169.

PDF(1713 KB)
PDF(1713 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 164-169.
论文

一种新的有限域动力刚度改进连分式求解算法

  • 高毅超1,刘昊2,唐欣薇3
作者信息 +

An improved continued fraction solution algorithm for dynamic stiffness of bounded domain

  • GAO Yichao1,LIU Hao2,TANG Xinwei3
Author information +
文章历史 +

摘要

比例边界有限元法仅需离散边界,网格划分灵活,且易于采用高阶单元,是结构动力分析的理想方法。针对有限域动力问题,基于广义特征值分解对动力刚度表示的比例边界有限元方程进行模态变换。通过选取特定的因子矩阵,简化了改进连分式算法的求解流程,提出了一种新的有限域动力刚度改进连分式求解算法。在动力刚度连分式渐近解的基础上引入辅助变量,建立了有限域动力问题的运动方程,其系数矩阵对称稀疏,可以利用现有的有限元求解器求解。正八边形板和重力坝算例表明,新算法具有良好的数值稳定性和计算精度,适用于实际工程问题的动力响应分析。
 

Abstract

The scaled boundary finite element method is an ideal method for dynamic analyses of structures. It requires the only discretization of the boundary, which leads to flexible mesh generation and easy employment of high-order elements. Based on the generalized eigenvalue decomposition, the scaled boundary finite element equation in dynamic stiffness for bounded domain dynamic problem was transformed. Choosing a specific factor matrix, a new improved continued fraction solution algorithm with simplified solution procedure was proposed. Introducing the auxiliary variables, the motion equation with sparse and symmetric coefficient matrices for bounded domain was established. It can be solved using the existing finite element solver. Numerical examples including a regular octagon plate and a gravity dam were analyzed. Good numerical stability and computational accuracy of the new algorithm are demonstrated; this algorithm is suitable for dynamic response analyses of realistic engineering problems.
 

关键词

动力分析 / 动力刚度 / 比例边界有限元法 / 连分式

Key words

Dynamic analysis / dynamic stiffness / scaled boundary finite element method / continued fraction

引用本文

导出引用
高毅超1,刘昊2,唐欣薇3. 一种新的有限域动力刚度改进连分式求解算法[J]. 振动与冲击, 2020, 39(12): 164-169
GAO Yichao1,LIU Hao2,TANG Xinwei3. An improved continued fraction solution algorithm for dynamic stiffness of bounded domain[J]. Journal of Vibration and Shock, 2020, 39(12): 164-169

参考文献

[1] Babuška I, Ihlenburg F, Paik E T, et al. A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 128(3):325-359.
[2] Patera A T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488.
[3] Dimitri K, Jeroen T. Spectral-element simulations of global seismic wave propagation - I. Validation[J]. Geophysical Journal International, 2002, 149(2):390-412.
[4] Cohen G, Joly P, Roberts J E, et al. Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation[J]. SIAM J. Numer. Anal., 2000, 38(6):2047-2078.
[5] Song C, Wolf J P. The scaled boundary finite-element method - alias consistent infinitesimal finite-element cell method - for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3):329-355.
[6] Wolf J P, Song C. The scaled boundary finite-element method - a fundamental solution-less boundary-element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(42):5551-5568.
[7] Wolf J P, Song C. Unit-impulse response of unbounded medium by scaled boundary finite-element method[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 159(3):355-367.
[8] Birk C, Prempramote S, Song C. An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains[J]. International Journal for Numerical Methods in Engineering, 2012, 89(3):269-298.
[9] Song C. A super-element for crack analysis in the time domain[J]. International Journal for Numerical Methods in Engineering, 2004, 61(8):1332-1357.
[10] Ooi E T, Natarajan S, Song C, et al. Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon - quadtree meshes[J]. International Journal of Impact Engineering, 2016, 90:154-164.
[11] Ooi E T, Song C, Tin-Loi F. A scaled boundary polygon formulation for elasto-plastic analyses[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268(SC):905-937.
[12] Vu T H, Deeks A J. Use of higher-order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2006, 65(10):1714-1733.
[13] Song C, Bazyar M H. Development of a fundamental-solution-less boundary element method for exterior wave problems[J]. Communications in Numerical Methods in Engineering, 2008, 24(4):257-279.
[14] Song C. The scaled boundary finite element method in structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8):1139-1171.
[15] Chen D, Birk C, Song C, et al. A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2014, 97(13):937-959.

PDF(1713 KB)

Accesses

Citation

Detail

段落导航
相关文章

/