集中粘性阻尼弦的本征问题

郑罡,白钰,张晓东,郭增伟

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 177-178.

PDF(676 KB)
PDF(676 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 177-178.
论文

集中粘性阻尼弦的本征问题

  • 郑罡,白钰,张晓东,郭增伟
作者信息 +

Eigen problem of a taut string with concentrated viscous damping

  • ZHENG Gang,BAI Yu,ZHANG Xiaodong,GUO Zengwei
Author information +
文章历史 +

摘要

对张紧弦在任意有限项集中线性粘性阻尼下的运动方程进行无量纲化,提出求解阻尼混合弦本征问题的一般方法。通过分离变量,将该混合动力学系统的偏微分方程转化为常微分方程,用格林函数的加权和函数表示系统的本征函数,导出系统的本征方程组、本征向量和频率方程,给出了阻尼混合弦本征函数显式解析表达式的一般形式。
 

Abstract

The partial differential equation of the free vibration of a taut string with concentrated viscous damping was normalized and a general approach was proposed for solving the eigen problem of the hybrid unit string. The ordinary differential equation for the eigen problem was established by separating the time and space variables in the partial differential equation. The eigen vector equations and the frequency equation were derived with the eigen function expressed in weighed sum of the Green function series. The general analytical explicit expression of the eigen function was provided.
 

关键词

/ 集中粘性阻尼 / 混合系统 / 非经典阻尼

Key words

String / Concentrated Viscous Damping / Hybrid System / Non-Classic Damping

引用本文

导出引用
郑罡,白钰,张晓东,郭增伟. 集中粘性阻尼弦的本征问题[J]. 振动与冲击, 2020, 39(12): 177-178
ZHENG Gang,BAI Yu,ZHANG Xiaodong,GUO Zengwei. Eigen problem of a taut string with concentrated viscous damping[J]. Journal of Vibration and Shock, 2020, 39(12): 177-178

参考文献

[1] Mikhalkin I K, Ponomarev Y K, Simakov O B. Experimental Research of the Life Time of the Cable Vibration Dampers [J]. Procedia Engineering, 2017, 176(6):423-428.
[2] Lin Chen, Limin Sun, Satish Nagarajaiah. Cable vibration control with both lateral and rotational dampers attached at an intermediate location [J]. Journal of Sound and Vibration, 2016, 377(1): 38-57.
[3] Hoang N, Fujino Y. Analytical study on bending effects in a stay cable with a damper[J]. Journal of Engineering Mechanics, 2007, 133(11): 1241–1246.
[4] Tabatabai H, Mehrabi A B. Design of mechanical viscous dampers for stay cables [J]. Journal of Bridge Engineering, 2000, 5(2):114-123.
[5] Main J A, Jones N P. Free vibrations of taut cable with attached damper. I: linear viscous damper [J]. Journal of Engineering Mechanics, 2002, 128(10):1062-1071.
[6] Carne T G. Guy cable design and damping for vertical axis wind turbines [R]. SAND, 80-2669. Albuquerque, New Mexico, US: Sandia National Laboratories, 1981.
[7] Yoneda, M. and Maeda, K. A study on practical estimation method for structural damping of stay cable with damper[C]. Proceedings of the Canada-Japan Workshop on Bridge Aerodynamics. Ottawa, Canada: 1989. 119-128.
[8] Pacheco B M, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper [J]. Journal of Structural Engineering, 1993, 119(6):1961-1979.
[9] Yu Z, Xu Y L. Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers — I. formulation [J]. Journal of Sound and Vibration, 1998, 214(4):659-673.
[10] Jean-Marc Battini. Analysis of dampers for stay cables using nonlinear beam elements [J]. Structures, 2018, 16: 45-49.
[11] Main J A, Jones N P. Vibration of tensioned beams with intermediate damper. II: damper near a support [J]. Journal of Engineering Mechanics, 2007, 133(4): 379–388.
[12] Baker G A, Johnson E A, Asce A M, et al. Semiactive damping of stay cables [J]. Journal of Engineering Mechanics, 1999, 133(1):1-11.
[13] Lazar F, Neild S A, Wagg D J. Vibration suppression of cables using tuned inerter dampers [J]. Engineering Structures, 2016, 122(1): 62-71.
[14] 方同、薛璞, 振动理论及应用[M]. 西安,西北工业大学出版社,1998,260-261.
FANG TONG, XUE PU. Vibration Theory and Its Application  [M]. Xi'an, Northwestern Polytechnical University Press, 1998,260-261.

 

PDF(676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/