基于改进形态-小波阈值降噪的轴承复合故障声学诊断

樊高瞻,周俊,朱昆莉

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 221-226.

PDF(2567 KB)
PDF(2567 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 221-226.
论文

基于改进形态-小波阈值降噪的轴承复合故障声学诊断

  • 樊高瞻,周俊,朱昆莉
作者信息 +

An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults

  • FAN Gaozhan,ZHOU Jun,ZHU Kunli 
Author information +
文章历史 +

摘要

现场采集的滚动轴承复合故障声学信号存在噪声来源复杂、背景噪声强、非线性等特点,导致已知的自适应多尺度形态滤波不能很好的适用于轴承复合故障的盲分离。针对上述问题,提出一种基于改进的自适应多尺度多结构形态滤波(IAMSCMF)、改进的小波阈值降噪方法(IWTDM)和稀疏量分析(SCA)相结合的滚动轴承复合故障特征盲提取方法。首先利用IAMSCMF和IWTDM构造滤波器进行滤波及提高信噪比(SNR);其次利用SCA分离信号;最后用FFT进行频谱分析。仿真分析和滚动轴承现场采集声学信号分析结果均清晰的提取出了轴承故障特征,验证了算法的有效性。

Abstract

Sound signals of rotating bearing compound faults acquired in the actual field have characteristics of complex noise sources, the strong background noise and the nonlinearity, causing traditional adaptive multi scale morphology filtering are not completely suitable for blind extraction of composite bearing faults. According to these problems, a method based on Improved Adaptive Multi Scale Compound Morphology Filter (IAMSCMF), Improved Wavelet Threshold De-noising Method (IWTDM) and Sparse Component Analysis (SCA) was presented to identify bearing faults. First, IAMSCMF and IWTDM were used to reduce noise and to improve Signal to Noise Rate (SNR), and then, using SCA to separate signals, at last, FFT calculation was used to deal with the spectrum analysis. The results of simulations and real rolling bearing sound signals analysis show that the method can extract the bearing fault characteristics, verifying the effectiveness of the proposed algorithm.

关键词

改进形态滤波 / 改进小波阈值降噪 / 稀疏量分析 / 盲分离 / 声学诊断

Key words

Improved morphology filtering / improved wavelet threshold de-noising / sparse component analysis / blind extraction / acoustic diagnosis

引用本文

导出引用
樊高瞻,周俊,朱昆莉. 基于改进形态-小波阈值降噪的轴承复合故障声学诊断[J]. 振动与冲击, 2020, 39(12): 221-226
FAN Gaozhan,ZHOU Jun,ZHU Kunli . An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults[J]. Journal of Vibration and Shock, 2020, 39(12): 221-226

参考文献

[1] 何正嘉,陈进,王太勇,等. 机械故障诊断理论及应用[M]. 北京: 高等教育出版社, 2010.
He Zheng-jia, Chen Jin, Wang Tai-yong, et al. Theory and Application of mechanical fault diagnosis[M]. Beijing: Higher Education Press, 2010.
[2] 李豫川,伍星,迟毅林,等. 基于形态滤波和稀疏分量分析的滚动轴承故障盲分离[J]. 振动与冲击, 2009, 28(11): 17-20.
Li Yu-chuan, WU Xing, Chi Yi-lin, et al. Blind separation for rolling bearing faults based on morphological filtering and sparse component analysis[J]. Journal of Vibration and Shock, 2009, 28(11): 17-20.
[3] 章立军,徐金梧,阳建洪,等. 自适应多尺度形态学分析及其在轴承故障诊断中的应用[J]. 北京科技大学学报(自然科学版), 2008, 30(4): 441-445.
ZHANG Lijun, XU Jinwu, YANG Jianhong, et al. Adaptive multiscale morphology analysis and its application in fault diagnosis of bearings[J]. Journal of University of Science and Technology Beijing, 2008, 30(4): 441-445.
[4] 邓飞跃,杨绍普,郭文武,等. 基于自适应多尺度形态学AVG-Hat滤波的滚动轴承故障特征提取方法[J]. 振动工程学报, 2017, 30(6): 1056-1065.
DENG Fei-yue, YANG Shao-pu, GUO Wen-wu, et al. Fault feature extraction method for rolling bearing based on adaptive multi-scale morphological AVG-Hat filtering[J]. Journal of Vibration Engineering, 2017, 30(6): 1056-1065.
[5] 李奕瑶,林建辉,刘伟渭. 对角切片谱提升的形态滤波方法及其在万向轴故障识别中的应用[J]. 振动与冲击, 2017, 36(10): 13-18.
LI Yifan, LIN Jianhui, LIU Weiwei. Diagonal slice spectrum lifted morphology filtering method and its application in cardan shaft fault detection[J]. Journal of Vibration and Shock, 2017, 36(10): 13-18.
[6] Maragos P, Schafer R W. Morphological Filters. Part I: Their Set-Theoretic Analysis and Relations to Linear Shift-Invariant Filters[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1987, 35(8): 1153-1169.
[7] Maragos P, Schafer R W. Morphological filters--Part II: Their relations to median, order-statistic, and stack filters[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1987, 35(8): 1170-1184.
[8] 章立军. 信号的形态学分析方法及其应用研究[D]. 北京: 北京科技大学, 2007.
ZHANG Lijun. Morphological Analysis Method of Signal and Its Application[D]. Beijing: University of Science and Technology Beijing, 2007.
[9] 王晶, 徐光华, 张四聪,等. 基于形态学滤波器的棘波提取技术[J]. 中国生物医学工程学报, 2007, 26(1): 69-73.
WANG Jing, XU Guang-Hua, ZHANG Si-Cong, et al. A Spike Detection Method Based on Morphological Filter[J]. Chinese Journal of Biomedical Engineering, 2007, 26(1): 69-73.
[10] 沈路. 数学形态学在机械故障诊断中的应用研究[D]. 浙江大学, 2010.
Shen Lu. Study on Application of Morphology in Machinery Fault Diagnosis[D]. Zhejiang: Zhejiang University, 2010.
[11] 周俊, 伍星, 迟毅林,等. 基于改进形态滤波的轴承复合故障诊断方法[C]. 全国设备监测诊断与维护学术会议、全国设备故障诊断学术会议暨全国设备诊断工程会议. 2014. 455-457.
Zhou Jun, Wu Xing, Chi Yi-lin, et al. Blind separation for rolling bearings faults based on the improved combined morphological flter[C], National Conference on Equipment Monitoring, Diagnosis and Maintenance、National Equipment Fault Diagnosis Conference and National Equipment Diagnostic Engineering Conference. 2014. 455-457.
[12] 杨正益, 刘博文, 任山,等. 一种改进的形态-小波阈值降噪方法[J]. 计算机科学, 2018, 45(5): 300-302.
YANG Zheng-yi, LIU Bo-wen, REN Shan, et al. Improved Morphological-wavelet Threshold De-nosing Method[J]. COMPUTER SCIENCE, 2018, 45(5): 300-302.
[13] 孟宗, 马钊, 刘东,等. 基于小波半软阈值消噪的盲源分离方法[J]. 中国机械工程, 2016, 27(3): 337-342.
Meng Zong, Ma Zhao, Liu Dong, et al. Blind Source Separation Based on Wavelet Semi-soft Threshold Denoising[J]. Chinese Mechanical Engineering, 2016, 27(3): 337-342.

PDF(2567 KB)

Accesses

Citation

Detail

段落导航
相关文章

/