热冲击下轴向运动FGM梁的自由振动分析

林鹏程,滕兆春

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 249-256.

PDF(1403 KB)
PDF(1403 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 249-256.
论文

热冲击下轴向运动FGM梁的自由振动分析

  • 林鹏程,滕兆春
作者信息 +

Free vibration analysis of axially moving FGM beams under thermal shock

  • LIN Pengcheng, TENG Zhaochun
Author information +
文章历史 +

摘要

基于Timoshenko梁理论研究两端夹紧、一端夹紧一端简支、两端简支三种不同边界条件下的轴向运动功能梯度材料(FGM)梁在热冲击载荷作用下的自由振动响应。利用Hamilton原理推导热冲击下轴向运动FGM梁的自由振动控制微分方程,并采用分离变量法求解一维热传导方程。通过微分求积法(DQM)在梁的长度方向进行离散,将原方程转化为四阶广义特征值问题,求解FGM梁自由振动的无量纲固有频率并进行特性分析。考虑了不同热冲击载荷,不同梯度指数和不同轴向运动无量纲速度对FGM梁自振频率的影响。结果表明:热冲击载荷越大,对降低FGM梁的固有频率的效果越明显;在轴向运动速度和热流输入不改变的情况下,逐渐增大材料梯度指数会使FGM梁的固有频率随之减小;FGM梁对热冲击短时间内有减缓作用,相对于均匀材料一阶失稳所需时间更长,受到热冲击的FGM梁在轴向运动时也更快达到失稳状态。

Abstract

Based on the Timoshenko beam theory, free vibrations of axially moving functionally graded material (FGM) beams under thermal shock were investigated for three different conditions with clamped-clamped, clamped-simply supported and simply supported-simply supported boundary. Using the Hamilton principle, the governing differential equation of free vibration of an axially moving FGM beam under thermal shock was derived and the one-dimensional heat conduction equation was solved by variable separation method. The beam was discretized along the length direction by using differential quadrature method (DQM) and the original equation was turned into fourth order generalized characteristic value problem, then the dimensionless natural frequencies of free vibration of the FGM beam were solved and analyzed. The influences of the different heat flow input, graded index and dimensionless axially moving speed on natural frequencies of free vibration of the FGM beam were presented. The results show that the larger the thermal shock load is, the more obvious the effect is to reduce the natural frequency of the FGM beam. Under the condition of certain axially moving speeds and heat flow input, increasing gradient indexes of functionally graded material gradually will reduce the dimensionless natural frequencies of the beams. The FGM beam will slow down the thermal shock in a short period of time and the first order instability will take long time relative to homogeneous material. Under thermal shock, the FGM beam easier reach an instability state in axially moving.

关键词

轴向运动 / 功能梯度材料 / Timoshenko梁 / 热冲击 / 自由振动 / 微分求积法(DQM)

Key words

axially moving / functionally graded material / Timoshenko beam / thermal shock / free vibration / Differential Quadrature Method (DQM)

引用本文

导出引用
林鹏程,滕兆春. 热冲击下轴向运动FGM梁的自由振动分析[J]. 振动与冲击, 2020, 39(12): 249-256
LIN Pengcheng, TENG Zhaochun. Free vibration analysis of axially moving FGM beams under thermal shock[J]. Journal of Vibration and Shock, 2020, 39(12): 249-256

参考文献

[1] Elishakoff I, Pentaras D, Gentilini C. Mechanics of functionally graded material structures[M]. Singapore: World Scientific, 2015.
[2] Bruck H A. A one-dimensional model for designing functionally graded materials to manage stress waves[J]. International Journal of Solids and Structures, 2000, 37(44):6383-6395.
[3] Narayan R J, Hobbs L W, Jin C M, et al. The use of functionally gradient materials in medicine[J]. JOM, 2006, 58(7):52-56.
[4] 张伟, 冯志青, 曹东兴. 航空发动机叶片非线性动力学分析[J]. 动力学与控制学报, 2012, 10(3):213-221.
ZHANG Wei, FENG Zhiqing, CAO Dongxing. Analysis on nonlinear dynamics of the aero-engine blade[J]. Journal of Dynamics and Control, 2012, 10(3):213-221.
[5] Zhang M, Huang H J, Wang H J, et al. Development of functionally gradient materials[J]. Materials Science Forum, 2003, 423-425(9):599-600.
[6] Wolfe D, Singh J. Functionally gradient ceramic/metallic coatings for gas turbine components by high-energy beams for high-temperature applications[J]. Journal of Materials Science, 1998, 33(14):3677-3692.
[7] 李进, 田兴华. 功能梯度材料的研究现状及应用[J]. 宁夏工程技术, 2007, 6(1):80-83.
LI Jin, TIAN Xinghua. Current status and applications of functional graded materials[J]. Ningxia Engineering Technology, 2007, 6(1):80-83.
[8] Wattanasakulpong N, Bui T Q. Vibration analysis of third-order shear deformable FGM beams with elastic support by Chebyshev collocation method[J]. International Journal of Structural Stability and Dynamics, 2018, 18(5):1-26.
[9] Hadji L, Khelifa Z, EI Abbes A B. A new higher order shear deformation model for functionally graded beams[J]. KSCE Journal of Civil Engineering, 2016, 20(5):1835-1841.
[10] 滕兆春, 衡亚洲, 张会凯等. 弹性地基上转动FGM梁自由振动的DTM分析[J]. 计算力学学报, 2017, 34(6):712-717.
TENG Zhaochun, HENG Yazhou, ZHANG Huikai, et al. DTM analysis for free vibration of rotating FGM beams resting on elastic foundations[J]. Chinese Journal of Computational Mechanics, 2017, 34(6): 712-717.
[11] Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[J]. Nuclear Engineering and Design, 2010, 240(4):697-705.
[12] Zhang D G. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory[J]. Meccanica, 2014, 49(2):283-293.
[13] Zhang D G, Zhou Y H. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720.
[14] 蒲育, 滕兆春. 基于一阶剪切变形理论FGM梁自由振动的改进型GDQ法求解[J]. 振动与冲击, 2018, 37(16):212-218.
Pu Yu, Teng Zhaochun. Free vibration of FGM beams based on the first-order shear deformation theory by a modified generalized differential quadrature method[J]. Journal of Vibration and Shock, 2018, 37(16):212-218.
[15] 陈红永, 李上明. 轴向运动梁在轴向载荷作用下的动力学特性研究[J]. 振动与冲击, 2016, 35(19):75-80.
CHEN Hongyong, LI Shangming. Dynamic characteristics of an axially moving Timoshenko beam under axial loads[J]. Journal of Vibration and Shock, 2016, 35(19):75-80.
[16] Malik P, Kadoli R. Thermal induced motion of functionally graded beams subjected to surface heating[J]. Ain Shams Engineering Journal, 2015, 9(1):149-160.
[17] Wang B L, Mai Y W, Zhang X H. Thermal shock resistance of functionally graded materials[J]. Acta Materialia, 2004, 52(17):4961-4972.
[18] 李世荣, 范亮亮. Timoshenko梁在热冲击下的瞬态动力响应[J]. 振动与冲击, 2008, 27(7):122-126.
LI Shirong, FAN Liangliang. Transient dynamic response of Timoshenko beams under thermal shock[J]. Journal of Vibration and Shock, 2008, 27(7):122-126.
[19] 许杨健, 涂代惠, 姜鲁珍. 换热边界下梯度功能材料板瞬态热应力研究[J]. 材料科学与工程学报, 2004, 22(3): 386-389.
XU Yangjian, TU Daihui, JIANG Luzhen. Transient thermal stresses of functionally gradient material plate under convective heat transfer boundary[J]. Journal of Materials Science and Engineering, 2004, 22(3): 386-389.
[20] Xiang H J, Yang J. Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction[J]. Composites Part B: Engineering, 2008, 39(2):292-303.
[21] 杨鑫, 陈海波. 热冲击作用下轴向运动梁的振动特     性研究[J]. 振动与冲击, 2017, 36(1):8-15.
YANG Xin, CHEN Haibo. Vibration characteristics of an axially moving beam under thermal shocks[J]. Journal of Vibration and Shock, 2017, 36(1):8-15.
[22] 杜海洋. 基于分离变量法的功能梯度结构热传导研究[D]. 邯郸: 河北工程大学, 2012.
[23] Shu C. Differential quadrature and its application in     engineering[M]. Berlin: Springer-Verlag, 2000.

PDF(1403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/