[1] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报,2013, 49(1):63-72.
WANG Guo-biao, HE Zheng-jia, CHEN Xue-feng, et al. Basic Research on Machinery Fault Diagnosis--What is the Prescription [J]. Journal of mechanical engineering, 2013, 49(1):63-72.
[2] 李 晗,萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策,2011, 26(1):1-9.
LI Han, XIAO De-yun. Survey on data driven fault diagnosis methods [J]. Control and Decision, 2011, 26(1):1-9.
[3] 张 妮,车立志,吴小进. 基于数据驱动的故障诊断技术研究现状及展望[J]. 计算机科学,2017(S1):47-52.
ZHANG Ni, CHE Li-zhi, WU Xiao-Jin. Present Situation and Prospect of Data-driven Based Fault Diagnosis Technique [J]. Computer Science, 2017(S1):47-52.
[4] 钱 林,康 敏. 基于小波包与质心粒子群的齿轮箱故障诊断及应用[J]. 振动与冲击,2016, 35(11):191-195.
QIAN Lin, KANG Min, Gearbox fault diagnosis and its application based on wavelet packet and centroid particle swarm algorithm [J]. Journal of vibration and shock, 2016, 35(11):191-195.
[5] 何大伟,彭靖波,胡金海,等. 基于改进 FOA 优化的 CS-SVM 轴承故障诊断研究[J]. 振动与冲击,2018, 37(18):108-114.
HE Da-wei, PENG Jing-bo, HU Jin-hai, et al. Bearing fault diagnosis based on a modified CS-SVM model optimized by an improved FOA algorithm [J]. Journal of vibration and shock, 2018, 37(18):108-114.
[6] Wang J, Ma Y, Zhang L, et al. Deep learning for smart manufacturing: Methods and applications [J]. Journal of Manufacturing Systems, 2018, 48:144-156.
[7] 任 浩,屈剑锋,柴 毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策,2017, 32(8):1345-1358.
REN Hao, QU Jian-feng, CHAI Yi, et al. Deep learning for fault diagnosis: The state of the art and challenge [J]. Control and Decision, 2017, 32(8):1345-1358.
[8] 吴春志,江鹏程,冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击,2018, 37(22):51-56.
WU Chun-zhi, JIANG Peng-cheng, FENG Fu-zhou, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network [J]. Journal of vibration and shock, 2018, 37(22):51-56.
[9] Jia F, Lei Y, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data [J]. Mechanical Systems and Signal Processing, 2016, 72-73:303-315.
[10] 邹今春,沈玉娣. 变工况齿轮箱故障诊断方法综述[J]. 机械传动,2012, 36(08):124-127.
ZOU Jin-chun, SHEN Yu-di. Review of Gearbox Fault Diagnosis Techniques under Variable Conditions [J]. Journal of Mechanical Transmission, 2012, 36(08):124-127.
[11] Xiang L, Wei Z, Qian D. A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning [J]. Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.05.021
[12] 潘海宁,张 军,秦 明,等. 基于能量谱特征的变速风机振动调制信号的检测方法[J]. 中国电机工程学报,2014, 20(34):166-171.
PAN Hai-ning, ZHANG Jun, QIN Ming, et al. Modulation Signal Detection of Wind Turbine’s Vibration Based on Feature Extraction of the Energy Spectrum [J]. Proceedings of the CSEE, 2014, 20(34):166-171.
[13] 秦嗣峰,冯志鹏,Ming L. Vold-Kalman滤波和高阶能量分离在时变工况行星齿轮箱故障诊断中的应用研究[J]. 振动工程学报,2015, 28(5):839-845.
QIN Si-feng, FENG Zhi-peng, Ming L. Application of Vold-Kalman filter and higher order energy separation to fault diagnosis of planetary gearbox under time-varying conditions [J]. Journal of Vibration Engineering, 2015, 28(5):839-845.
[14] Braun S. The synchronous (time domain) average revisited [J]. Mechanical Systems & Signal Processing, 2011, 25(4):1087-1102.
[15] He G, Ding K, Li W, et al. A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique [J]. Renewable Energy, 2016, 87:364-375.
[16] Lu W, Liang B, Cheng Y, et al. Deep Model Based Domain Adaptation for Fault Diagnosis [J]. IEEE Transactions on Industrial Electronics, 2017, 64(3):2296-2305.
[17] Wen L, Gao L, Li X. A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, PP(99):1-9.
[18] Zhe T, Wei L, Bo Z, et al. Bearing Fault Diagnosis Based on Domain Adaptation Using Transferable Features under Different Working Conditions [J]. Shock and Vibration, 2018, 2018:1-12.
[19] 康守强,胡明武,王玉静,等. 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报,2018:1-9.
KANG Shou-qiang, HU Ming-wu, WANG Yu-jing, et al. Fault Diagnosis Method of a Rolling Bearing Under Variable Working Conditions based on Feature Transfer Learning [J]. Proceedings of the CSEE, 2018:1-9.
[20] Wei Z, Gaoliang P, Chuanhao L, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals [J]. Sensors, 2017, 17(425):1-21.
[21] Zhang W, Li C, Peng G, Chen Y, Zhang Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J]. Mechanical Systems and Signal Processing, 2018, 100:439–53.
[22] 谢骏遥,王金江,赵 锐,等. 迁移因子分析在齿轮箱变工况故障诊断中的应用[J]. 电子测量与仪器学报,2016, 30(4):534-541.
XIE Jun-yao, WANG Jin-jiang, ZHAO Rui, et al. Application of transfer factor analysis in gearbox fault diagnosis under various working condition [J]. Journal of electronic measurement and instrumentation, 2016, 30(4):534-541.
[23] 段礼祥,谢骏遥,王 凯,等. 基于不同工况下辅助数据集的齿轮箱故障诊断[J]. 振动与冲击,2017, 36(10):104-108.
DUAN Li-xiang, XIE Jun-yao, WANG Kai, et al. Gearbox diagnosis based on auxiliary monitoring datasets of different working conditions [J]. Journal of vibration and shock, 2017, 36(10):104-108.
[24] 陈 超,沈 飞,严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报,2017, 38(1):33-40.
CHEN Chao, SHEN Fei, YAN Ru-qiang. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis [J]. Chinese Journal of Scientific Instrument, 2017, 38(1):33-40.
[25] 沈 飞,陈 超,严如强. 奇异值分解与迁移学习在电机故障诊断中的应用[J]. 振动工程学报,2017, 30(1):118-126.
SHEN Fei, CHEN Chao, YAN Ru-qiang. Application of SVD and transfer learning strategy on motor fault diagnosis [J]. Journal of Vibration Engineering, 2017, 30(1):118-126.
[26] 刘正平,胡 俊,张 龙. 基于堆栈降噪自编码的轴承故障诊断方法[J]. 机床与液压,2018, 46(15):177-181.
LIU Zheng-ping, HU Jun, ZHANG Long. Fault Diagnosis Method of Bearing Based on Stacked Denoising Autoencoder [J]. Machine Tool & Hydraulics, 2018, 46(15):177-181.
[27] 王丽华,谢阳阳,张永宏,等. 采用深度学习的异步电机故障诊断方法[J]. 西安交通大学学报,2017, 51(10):128-134.
WANG Li-hua, XIE Yang-yang, ZHANG Yong-hong, et al. A Fault Diagnosis Method for Asynchronous Motor Using Deep Learning [J]. Journal of Xi’an Jiaotong university. 2017, 51(10):128-134.
[28] Shao H, Jiang H, Lin Y, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders [J]. Mechanical Systems and Signal Processing, 2018, 102:278-297.
[29] Chen M, Xu Z, Weinberger K, et al. Marginalized Denoising Autoencoders for Domain Adaptation [J]. Computer Science, 2012:1-8.
[30] Shao H, Jiang H, Zhao H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis [J]. Mechanical Systems and Signal Processing, 2017, 95:187-204.
[31] Bernhard Schölkopf, Smola A , Klaus-Robert Müller. Kernel principal component analysis [C]. International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 1997:1-6.