时频谱相似性度量的故障特征提取方法

郭远晶1,魏燕定2,金晓航3,林勇1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 70-77.

PDF(2205 KB)
PDF(2205 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 70-77.
论文

时频谱相似性度量的故障特征提取方法

  • 郭远晶1,魏燕定2,金晓航3,林勇1
作者信息 +

Fault feature extraction from time-frequency spectrum by using similarity measurement

  • GUO Yuanjing1,WEI Yanding2,JIN Xiaohang3,LIN Yong1
Author information +
文章历史 +

摘要

针对齿轮或轴承在局部故障损伤状态下的振动信号,提出一种基于时频谱相似性度量的故障特征提取方法,用于齿轮或轴承相关故障的诊断。该方法首先利用比例因子可调的S变换对振动信号进行时频变换;然后在S变换时频谱中,选取一个显著的冲击特征,保持其频率不变,令其沿时间轴方向,从初始时间平移至终了时间,同时计算冲击特征与所遮掩时频区块之间的余弦相似度和相关系数;平移结束后获得余弦相似度和相关系数的曲线。仿真信号和齿轮、轴承故障振动信号的处理结果表明,余弦相似度曲线和相关系数曲线均可展现出故障冲击特征的周期性变化规律,且两者的频谱均能够提取出故障特征频率,实现齿轮或轴承相关故障的识别。

Abstract

A fault-related feature extraction method, which is based on the analysis of time-frequency spectrum by using similarity measurement, is proposed for gear or bearing fault diagnosis. In this approach, the time domain vibration signal is transformed into time-frequency domain by using S transform. Then, a noticeable impact feature is selected and keeping its frequency constant, translated from the initial time of the time-frequency spectrum along the time axis to the end time, while the cosine similarity coefficient and the correlation coefficient between the impact feature and its masked block in the spectrum are calculated. After that, a cosine similarity coefficient curve and a correlation coefficient curve are got. Finally, fault-related features can then be extracted clearly with the analysis of the frequency spectrum of the two time series coefficient data.

关键词

故障诊断 / 冲击特征 / S变换 / 余弦相似度 / 相关系数

Key words

 fault diagnosis / impact feature / S transform / cosine similarity coefficient / correlation coefficient

引用本文

导出引用
郭远晶1,魏燕定2,金晓航3,林勇1. 时频谱相似性度量的故障特征提取方法[J]. 振动与冲击, 2020, 39(12): 70-77
GUO Yuanjing1,WEI Yanding2,JIN Xiaohang3,LIN Yong1. Fault feature extraction from time-frequency spectrum by using similarity measurement[J]. Journal of Vibration and Shock, 2020, 39(12): 70-77

参考文献

[1] Ding X, He Q. Time-frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction [J]. Mechanical Systems and Signal Processing, 2016, 80:392-413.
[2] Tang B, Liu W, Song T. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution [J]. Renewable Energy, 2010, 35(12):2862-2866.
[3] 牟伟杰,石林锁,蔡艳平,等. 基于振动时频图像全局和局部特征融合的柴油机故障诊断[J]. 振动与冲击,2018,37(10):14-19.
MU Wei-jie, SHI Lin-suo, CAI Yan-ping, et al. Diesel engine fault diagnosis based on the global and local features fusion of time-frequency image [J]. Journal of Vibration and Shock, 2018, 37(10):14-19.
[4] He Q, Wang X. Time-frequency manifold correlation matching for periodic fault identification in rotating machines [J]. Journal of Sound and Vibration, 2013, 332(10):2611-2626.
[5] 段晨东,高强,徐先峰. 频率切片小波变换时频分析方法在发电机组故障诊断中的应用[J]. 中国电机工程学报,2013,33(32):96-103.
DUAN Chen-dong, GAO Qiang, XU Xian-feng. Generator Unit Fault Diagnosis Using the Frequency Slice Wavelet Transform Time-frequency Analysis Method [J]. Proceedings of the CSEE, 2013, 33(32):96-103.
[6] Chen B, Zhang Z, Sun C, et al. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors[J]. Mechanical Systems and Signal Processing, 2012, 33(Complete):275-298.
[7] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 2002, 44(4):998-1001.
[8] Parolai S. Denoising of Seismograms Using the S Transform [J]. Bulletin of the Seismological Society of America, 2009,99 (1): 226-234.
[9] Zhao F, Yang R. Power-Quality Disturbance Recognition Using S-Transform [J]. IEEE Transactions on Power Delivery, 2007, 22(2):944-950.
[10] Ari S, Das M K, Chacko A. ECG signal enhancement using S-Transform [J]. Computers in Biology and Medicine, 2013, 43(6):649-660.
[11] Pinnegar C R, Khosravani H, Federico P. Time–Frequency Phase Analysis of Ictal EEG Recordings With the S-Transform [J]. IEEE Transactions on Biomedical Engineering, 2009, 56(11):2583-2593.
[12] Li B, Zhang P L, Liu D S, et al. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization [J]. Journal of Sound and Vibration, 2011, 330(10):2388-2399.
[13] 刘建敏,刘远宏,江鹏程,等. 基于包络S变换时频图像提取齿轮故障特征[J]. 振动与冲击,2014,33(1):165-169.
LIU Jian-min, LIU Yuan-hong, JIANG Peng-cheng, et al. Extraction of gear fault features based on the envelope and time-frequency image of S transformation [J]. Journal of Vibration and Shock, 2014, 33(1):165-169.
[14] 王波,刘树林,张宏利. 基于 QGA 优化广义 S 变换的滚动轴承故障特征提取[J]. 振动与冲击,2017,36(5):108-113,119.
WANG Bo, LIU Shu-lin, ZHANG Hong-li. Fault feature extraction for rolling bearings based on generalized S transformation optimized with Quantum genetic algorithm [J]. Journal of Vibration and Shock, 2017, 36(5): 108-113,119.
[15] Ma J, Jin J. Analysis and design of modified window shapes for S-transform to improve time-frequency localization [J]. Mechanical Systems and Signal Processing, 2015, 58-59:271-284.
[16] 郭远晶,魏燕定,金晓航,等. 基于S变换谱核密度估计的齿轮故障诊断[J]. 仪器仪表学报,2017(6):1432-1439.
GUO Yuan-jing, WEI Yan-ding, JIN Xiao-hang, et al. Gear fault diagnosis based on kernel density estimation of S transform spectrum [J]. Chinese Journal of Scientific Instrument, 2017(6):1432-1439.
[17] Mansinha L, Stockwell R G, Lowe R P, et al. Local S-spectrum analysis of 1-D and 2-D data[J]. Physics of the Earth & Planetary Interiors, 1997, 103(3):329-336.
 
 

PDF(2205 KB)

Accesses

Citation

Detail

段落导航
相关文章

/