[1] Ding X, He Q. Time-frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction [J]. Mechanical Systems and Signal Processing, 2016, 80:392-413.
[2] Tang B, Liu W, Song T. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution [J]. Renewable Energy, 2010, 35(12):2862-2866.
[3] 牟伟杰,石林锁,蔡艳平,等. 基于振动时频图像全局和局部特征融合的柴油机故障诊断[J]. 振动与冲击,2018,37(10):14-19.
MU Wei-jie, SHI Lin-suo, CAI Yan-ping, et al. Diesel engine fault diagnosis based on the global and local features fusion of time-frequency image [J]. Journal of Vibration and Shock, 2018, 37(10):14-19.
[4] He Q, Wang X. Time-frequency manifold correlation matching for periodic fault identification in rotating machines [J]. Journal of Sound and Vibration, 2013, 332(10):2611-2626.
[5] 段晨东,高强,徐先峰. 频率切片小波变换时频分析方法在发电机组故障诊断中的应用[J]. 中国电机工程学报,2013,33(32):96-103.
DUAN Chen-dong, GAO Qiang, XU Xian-feng. Generator Unit Fault Diagnosis Using the Frequency Slice Wavelet Transform Time-frequency Analysis Method [J]. Proceedings of the CSEE, 2013, 33(32):96-103.
[6] Chen B, Zhang Z, Sun C, et al. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors[J]. Mechanical Systems and Signal Processing, 2012, 33(Complete):275-298.
[7] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 2002, 44(4):998-1001.
[8] Parolai S. Denoising of Seismograms Using the S Transform [J]. Bulletin of the Seismological Society of America, 2009,99 (1): 226-234.
[9] Zhao F, Yang R. Power-Quality Disturbance Recognition Using S-Transform [J]. IEEE Transactions on Power Delivery, 2007, 22(2):944-950.
[10] Ari S, Das M K, Chacko A. ECG signal enhancement using S-Transform [J]. Computers in Biology and Medicine, 2013, 43(6):649-660.
[11] Pinnegar C R, Khosravani H, Federico P. Time–Frequency Phase Analysis of Ictal EEG Recordings With the S-Transform [J]. IEEE Transactions on Biomedical Engineering, 2009, 56(11):2583-2593.
[12] Li B, Zhang P L, Liu D S, et al. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization [J]. Journal of Sound and Vibration, 2011, 330(10):2388-2399.
[13] 刘建敏,刘远宏,江鹏程,等. 基于包络S变换时频图像提取齿轮故障特征[J]. 振动与冲击,2014,33(1):165-169.
LIU Jian-min, LIU Yuan-hong, JIANG Peng-cheng, et al. Extraction of gear fault features based on the envelope and time-frequency image of S transformation [J]. Journal of Vibration and Shock, 2014, 33(1):165-169.
[14] 王波,刘树林,张宏利. 基于 QGA 优化广义 S 变换的滚动轴承故障特征提取[J]. 振动与冲击,2017,36(5):108-113,119.
WANG Bo, LIU Shu-lin, ZHANG Hong-li. Fault feature extraction for rolling bearings based on generalized S transformation optimized with Quantum genetic algorithm [J]. Journal of Vibration and Shock, 2017, 36(5): 108-113,119.
[15] Ma J, Jin J. Analysis and design of modified window shapes for S-transform to improve time-frequency localization [J]. Mechanical Systems and Signal Processing, 2015, 58-59:271-284.
[16] 郭远晶,魏燕定,金晓航,等. 基于S变换谱核密度估计的齿轮故障诊断[J]. 仪器仪表学报,2017(6):1432-1439.
GUO Yuan-jing, WEI Yan-ding, JIN Xiao-hang, et al. Gear fault diagnosis based on kernel density estimation of S transform spectrum [J]. Chinese Journal of Scientific Instrument, 2017(6):1432-1439.
[17] Mansinha L, Stockwell R G, Lowe R P, et al. Local S-spectrum analysis of 1-D and 2-D data[J]. Physics of the Earth & Planetary Interiors, 1997, 103(3):329-336.