基于弹性力学的裂缝梁自由振动分析

赵佳雷,周叮,张建东,胡朝斌

振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 78-84.

PDF(1478 KB)
PDF(1478 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (12) : 78-84.
论文

基于弹性力学的裂缝梁自由振动分析

  • 赵佳雷,周叮,张建东,胡朝斌
作者信息 +

Free vibration of a beam with a crack based on elasticity

  • ZHAO Jialei,ZHOU Ding,ZHANG Jiandong,HU Chaobin
Author information +
文章历史 +

摘要

基于弹性力学平面应力理论,采用Chebyshev-Ritz法分析裂缝梁的自由振动特性。将梁分成三个子梁,取边界函数与Chebyshev多项式的乘积作为每个子梁的位移试函数,保证解的快速收敛性,并使本方法适用于不同的几何边界条件。用里兹法列出每个子梁的振动特征方程,并根据各子梁在界面上的位移连续性条件得到整个裂缝梁的振动特征方程。计算结果与文献数据和有限元分析吻合很好。最后分析了裂缝深度和梁的高跨比对动力特性的影响。

Abstract

Free vibration characteristics of the beam with a crack is presented using Chebyshev-Ritz method in this paper. The analysis procedure is based on the plane stress theory of elasticity. In the analysis, the cracked beam is divided into three sub-beams. The product of boundary function and Chebyshev polynomials is taken as the admissible functions of the displacement functions. This ensures the fast convergence of the solution and makes the method suitable for different geometric boundary conditions. The eigenvalue equations of each sub-beam can be established using Ritz method. The vibration characteristic equation of the whole cracked beam is obtained by the displacement continuity condition of each sub-beam at the joint. The results are consistent with that of in literature and the finite element analysis, and it verified the accuracy of the method in this paper. Finally, the effects of the structural parameters such as height-span ratio, crack depth on non-dimensional natural frequencies and mode shapes are performed.

关键词

平面应力理论 / Chebyshev-Ritz法 / 裂缝梁 / 频率和振型

Key words

plane stress theory / Chebyshev-Ritz method / cracked beam / frequency and mode shape

引用本文

导出引用
赵佳雷,周叮,张建东,胡朝斌. 基于弹性力学的裂缝梁自由振动分析[J]. 振动与冲击, 2020, 39(12): 78-84
ZHAO Jialei,ZHOU Ding,ZHANG Jiandong,HU Chaobin. Free vibration of a beam with a crack based on elasticity[J]. Journal of Vibration and Shock, 2020, 39(12): 78-84

参考文献

[1] Christides S, Barr A D S. One-dimensional theory of cracked Bernoulli-Euler beams [J]. International Journal of Mechanical Sciences, 1984, 26(11):639-648.
[2] Christides S, Barr A D S. Torsional vibration of cracked beams of non-circular cross-section [J]. International Journal of Mechanical Sciences, 1986, 28(7):473-490.
[3] Chondros T G, Dimarogonas A D. Vibration of a cracked cantilever beam [J]. Journal of Vibration and Acoustics, 1998, 120(3):742-742.
[4] Barad K H, Sharma D S, Vyas V. Crack Detection in Cantilever Beam by Frequency based Method [J]. Procedia Engineering, 2013, 51:770-775.
[5] 邓昊,程伟. 一种功能梯度Timoshenko梁的损伤识别方法[J]. 北京航空航天大学学报, 2016, 42(10):2214-2221.
 DENG Hao, CHENG Wei. Damage identification method for functionally graded Timoshenko beams [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2214-2221.
[6] 包日东,梁峰. 两端弹性支承裂纹管道的非线性动力学特性[J]. 振动与冲击, 2017, 第36卷(1):70-74, 87.
 BAO Ridong, LIANG Feng. Nonlinear dynamic characteristics of a cracked pipe conveying fluid under two-end elastic supports [J]. Journal Of Vibration And Shock, 2017, 36(1): 70-74, 87.
[7] 金超超,朱翔,李天匀,等. 含环向表面裂纹充液圆柱壳的耦合振动特性分析[J]. 振动与冲击, 2018, 37 (23):71-77.
 JIN Chaochao, ZHU Xiang, LI Tianyun, et al. Coupled vibration feature analysis for a fluid-filled cylindrical shell with a circumferential surface crack [J]. Journal Of Vibration And Shock, 2018, 37(23): 71-77.
[8] 翁丰壕,毛崎波.裂纹梁无效损伤位置的理论分析和实验研究[J]. 噪声与振动控制, 2017, 第37卷(1):132-136.
 WENG Fenghao, MAO Qibo. Theoretical Analysis and Experimental Study on Non-effective Damage Locations of Cracked Beams [J]. Noise And Vibration Control, 2017, 37 (1):132-136.
[9] Swamidas A S J, Yang X, Seshadri R. Identification of cracking in beam structures using Timoshenko and Euler formulations [J]. Journal of Engineering Mechanics, 2004, 130( 11):1297-1308.
[10] 杨鄂川,李映辉,赵翔,等. 基于能量法的裂纹梁振动特性分析(英文)[J]. 机床与液压, 2014, 42(12): 34-39.
 YANG Echuan, LI Yinghui, ZHAO Xiang, et al. Vibration characteristics analysis of cracked beams based on energy method [J]. Hydromechatronics Engineering, 2014, 42(12): 34-39.
[11] Yashar A, Ferguson N, Ghandchi-Tehrani M. Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge [J]. Journal of Sound and Vibration, 2018, 420, 346-356.
[12] 马辉,曾劲,郎自强,等. 斜裂纹悬臂梁非线性振动特性分析[J]. 振动与冲击, 2016, 第35卷(12):86-91.
 MA Hui, ZENG Jin, LANG Ziqiang, et al. Nonlinear vibration characteristics analysis of a cantilever beam with slant crack [J]. Journal Of Vibration And Shock, 2016, 35(12):86-91.
[13] 马辉,张文胜,曾劲,等. 非对称夹持的裂纹悬臂梁振动响应分析[J]. 振动与冲击, 2017, 第36卷(12):37-42.
 MA Hui, ZHANG Wensheng, ZENG Jin, et al. Asymmetric gripper-induced vibration responses analysis for a cracked cantilever beam [J]. Journal Of Vibration And Shock, 2017, 36(12): 37-42.
[14] 李兆军,龙慧,刘洋,等. 基于有限元位移模式的含裂纹梁结构动力学模型[J]. 中国机械工程, 2014, 25(12):1563-1566.
 LI Zhaojun, LONG Hui, LIU Yang, et al. Dynamics Equation of Cracked Beam Based on Finite Element Displacement Mode [J]. China Mechanical Engineering, 2014, 25(12):1563-1566.
[15] 王迪,朱翔,李天匀,等. 基于能量有限元法的损伤板结构振动分析[J]. 振动与冲击, 2017, 第36卷(11):73-78.
 WANG Di, ZHU Xiang, LI Tianyun, et al. Vibration analysis of damaged plates based on energy finite element method [J]. Journal Of Vibration And Shock, 2017, 36(11): 73-78.
[16] Zhou D, Cheung Y K, et al. Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method [J]. International Journal of Solids & Structures, 2002, 39(26):6339-6353.
[17] Zhou D. Three-dimensional vibration analysis of structural elements using Chebyshev-Ritz method [M]. Science Press, 2007.
[18] Khaji N, Shafiei M, Jalalpour M. Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions [J]. International Journal of Mechanical Sciences, 2009, 51(9):667-681.

PDF(1478 KB)

Accesses

Citation

Detail

段落导航
相关文章

/