基于高阶累积量的高精度时延估计算法

张亚斌1,李胜全1,2,3,朱建军1,2,3,归丽华4,颜康1,白嵩1,赵哲1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 103-109.

PDF(918 KB)
PDF(918 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 103-109.
论文

基于高阶累积量的高精度时延估计算法

  • 张亚斌1,李胜全1,2,3,朱建军1,2,3,归丽华4,颜康1,白嵩1,赵哲1
作者信息 +

High precision time-delay estimation algorithm based on high-order cumulant

  • ZHANG Yabin1,  LI Shengquan1,2,3,  ZHU Jianjun1,2,3, GUI Lihua4, YAN Kang1,  BAI Song1, ZHAO Zhe1
Author information +
文章历史 +

摘要

针对海洋探测中由于接收信号信噪比低并存在各种噪声干扰导致时延估计精度低的问题,提出一种基于二次相关和高阶累积量的具有多种噪声抑制能力的高精度时延估计新方法——SC-HOCS法。该方法首先对两路接收信号进行自相关和互相关处理,抑制部分高斯噪声,然后利用高阶累积量一维切片法对信号进行处理,抑制相关高斯噪声和非高斯色噪声,通过对接收信号的上述处理提高信噪比,最后结合希尔伯特变换对相关峰进行锐化处理,进一步提高时延估计精度。与广义相关法、二次相关法及高阶累积量一维切片法相比,该方法能很好地抑制相关噪声并且能在更低的信噪比下获得较好的时延估计精度,同时该算法计算量较小,可满足对数据实时处理的需求。计算机仿真和水池实验验证了该方法的有效性。该方法为海洋探测中低信噪比信号的高精度时延估计提供一种新的技术途径。

Abstract

Aiming at the problem of low accuracy of time delay estimation in ocean exploration due to low signal-to-noise ratio (SNR) of received signals and various noise disturbances, a new high-order cumulant-based high-precision time delay estimation method called SC-HOCS was proposed here. Firstly, autocorrelation and cross-correlation were conducted for received signals of two channels to suppress part of Gaussian noise. Then signals were processed with the high-order cumulant one-dimensional slice method to suppress correlated Gaussian noise and non-Gaussian color one, and improve the SNR of received signals. Finally, Hilbert transform was used to sharpen correlation peaks, and further improve the accuracy of time delay estimation. It was shown that compared with the generalized correlation method, quadratic correlation one and high-order cumulant one-dimensional slice one, the proposed method can suppress correlated noise very well and obtain better time delay estimation accuracy under lower SNR; this algorithm has less amount of computation to meet the requirements of real-time data processing; the effectiveness of the proposed method is verified with computer simulation and pool tests; this method provides a new technical way for high precision time delay estimation of signals with low SNR in ocean exploration.

关键词

高阶累积量 / 二次相关 / 时延估计 / 希尔伯特变换 / 海洋探测

Key words

high-order cumulant / second correlation / time delay estimation / Hilbert transform / ocean exploration

引用本文

导出引用
张亚斌1,李胜全1,2,3,朱建军1,2,3,归丽华4,颜康1,白嵩1,赵哲1. 基于高阶累积量的高精度时延估计算法[J]. 振动与冲击, 2020, 39(13): 103-109
ZHANG Yabin1, LI Shengquan1,2,3, ZHU Jianjun1,2,3, GUI Lihua4, YAN Kang1, BAI Song1, ZHAO Zhe1. High precision time-delay estimation algorithm based on high-order cumulant[J]. Journal of Vibration and Shock, 2020, 39(13): 103-109

参考文献

[1]       胡展铭, 姜文博, 江伟伟, . 通信技术在近海环境监测中的应用[J]. 海洋环境科学, 2012, 31(4):613-615.

HU Zhan-ming, JIANG Wen-bo, JIANG Wei-wei, et al. Appliction of communication technology to coastal marine environmental monitoring[J]. MARINE ENVIRONMENTAL SCIENCE, 2012, 31(4):613-615.

[2]       Knapp C, Carter G. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(4): 320-327.

[3]       姜彦玲. 时延误差的高精度估计与补偿方法研究[D]. 西安:长安大学, 2017.

[4]       林力新. 高精度时延估计算法的研究及其在水声定位系统中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2016.

[5]       张亚斌,孙磊,马晶鑫, . 一种基于环境噪声的被动测深方法[J]. 海洋测绘,2017, 37(6): 35-38.

ZHANG  Ya-bin, SUN Lei, MA Jing-xin, et al. A passive fathometer method using ambient noise[J]. HYDROGRAPHIC SURVEYING AND CHARTING, 2017, 37(6): 35-38.

[6]       YANG X, MA J, LU Y. Research on location scheme of wireless sensor networks based on TDOA[J]. Communication in Computer and Information Science, 2018, 873(1): 588-600.

[7]       YING D, YAN Y. Robust and fast location of single speech source using a planar array[J]. IEEE Signal Processing Letters, 2013,20(9): 909-912.

[8]       Lee J, Jin M, Ahh K K. Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation [J]. Mechatronics, 2013, 23(3): 310-317.

[9]       Hojjati A, Kim A G, Linder E V. Robust strong lensing time delay estimation[J]. Physical Review D, 2013, 87(12): 12-35.

[10]    于玲. Alpha稳定分布噪声环境下韧性时延估计新算法研究[D]. 辽宁:大连理工大学, 2017.

[11]    金留念. 基于二次相关的时延估计方法研究[J]. 电子信息对抗技术, 2011, 26(1): 39-41.

JIN Liu-nian. Research on time delay estimation based on second correlation[J]. Electronic Information Warfare Technology, 2011, 26(1): 39-41.

[12]    程方晓, 刘璐, 姚清华, . 基于改进时延估计的声源定位算法[J]. 吉林大学学报(理学版), 2018, 56(35): 681-687.

CHEN Fang-xiao, LIU Lu, YAO Qing-hua, et al. Acoustic source localization algorithm based on improved time delay estimation[J]. Jounal of Jilin University(Science Edition), 2018, 56(35): 681-687.

[13]    ZhANG X, BAI Y, CHEN X. An improved cross-correlation method based on fractional delay estimation for velocity measurement of high speed targets[C]. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2013:2208(2201).

[14]    LIU W. Time delay estimation for weak signals with impulsive noises[C]. 2012 International Conference on Mechatronics and Automation (ICMA), Chengdu, China, 2012: 1451-1455.

[15]    ZENG W J, So H, Zoubir A M. Anζp-norm minimization approach to time delay estimation in impulsive nosie[J]. Digital Signal Processing, 2013,23(4): 1247-1254.

[16]    YANG J, Akanji O, Hutchins D, et al. Time-delay estimation and correlation analysis of acoustic signal in granular media using wavelet decomposition[C]. 2014 IEEE International Ultrasonics Symposium(IUS), Chicago, USA, 2014: 2529-2531.

[17]    SU Z, WU R. Delay and Doppler scale estimation of multiple moving targets via DS-WRELAX[J]. Electronics Letters, 2000, 36(9): 827-828.

[18]    JIANG Y, XUE Y, HU A, et al. Improved MUSIC algorithm for delay estimation of OFDM signal[J]. Journal of Computational Information Systems, 2014, 10(23): 10103-10111.  

[19]    LOU Yuanzhe, SUN Guolu, ZHANG Xiaotong, et al. Adaptive time-delay estimation based on normalized maximum correntropy criterion for near-field electromagnetic ranging[J]. Computer and Electrical Engineering, 2018, 67(1):404-414.

[20]    封皓,靳世久,曾周末, . 基于三阶累积量及自适应滤波时延估计的管道定位方法[J]. 振动与冲击,2011,30(9):207-210.

FENG Hao, JIN Shi-jiu, ZENG Zhou-mo, et al. Location method for pipeline vibration based on third-order cumulant and adaptive filter time delay estimation[J]. Journal of Vibration and Shock, 2011,30(9):207-210.

[21]    夏天,王新晴,赵慧敏 . 基于高阶累积量的柴油发动机曲轴轴承故障特征提取[J]. 振动与冲击,2011,30(1):77-81.

XIA Tian, WANG Xin-qin, ZHAO Hui-min, et al. Extracting fault features of a Diesel engine’s crankshaft bearing based on high-order cumulation[J]. Journal of Vibration and Shock, 2011,30(1):77-81.

[22]    陈祖斌, 刘昕, 孙峰, . 基于三阶累积量一维切片的微地震信号时延估计[J]. 湖南大学学报(自然科学版), 2016, 43(8): 120-127.

CHEN Zu-bin, LIU Xin, SUN Feng, et al. Time delay estimation of microseismic signal based on one-dimensional slice of three-order cumulants[J]. Journal of Hunan University(Natural Sciences), 2016, 43(8): 120-127.

[23]    吕婧一. 高阶累积量分析及其应用研究[D]. 北京:北京邮电大学, 2014.

[24]    马剑飞,颜冰,陈春行, . 基于RI-ALE-MUSIC的舰船地震波时频检测[J]. 振动与冲击,2018,37(13):224-228.

MA Jian-fei, YAN Bing, CHEN Chun-hang, et al. Time-frequency detection for ship seismic wave based on RI-ALE-MUSIC[J]. Journal of Vibration and Shock, 2018,37(13):224-228.

[25]    王之海,伍星,柳小勤. 基于二次相关加权阈值的滚动轴承声发射信号小波包降噪算法研究[J]. 振动与冲击,2015,34(21):175-199.

WANG Zhi-hai, WU Xing, LIU Xiao-qin. A new noise reduction method for rolling bearing acoustic emission signals based on wavelet packet transformation with quadratic correlation weighted  threshold[J]. Journal of Vibration and Shock, 2015,34(21):175-199.


PDF(918 KB)

551

Accesses

0

Citation

Detail

段落导航
相关文章

/