长周期速度脉冲是近场脉冲型地震动的最重要特征之一,高通滤波会改变低频脉冲成分与其他频率成分的相对大小,进而影响地震动的反应谱形状。选取了一组近场脉冲型地震动,根据脉冲频率fp定义相对截止频率,考察高通滤波对弹性位移反应谱衰减的影响规律。通过数值分析比较了因果性滤波和非因果性滤波的区别,分析了相对截止频率对最低可用频率、脉冲属性判定和高阻尼比反应谱的影响。分析结果表明:相对截止频率越高,截止频率与最低可用频率的比例系数越小;当截止频率取0.4fp时,该比例系数与一般远场地震动结果相近;截止频率小于0.4fp时,脉冲属性和脉冲周期无显著变化。在长周期区段内,相对截止频率小于等于0.4fp时,阻尼比的影响可以忽略;相对截止频率大于0.4fp时,应考虑阻尼比的影响。
Abstract
Long period velocity pulse is one of the most important features of near-field impulsive ground motion. High-pass filtering can change relative proportion between low-frequency pulse components and other ones, and then affects response spectral shape of ground motion. Here, a set of near-field ground motions was chosen, the relative cut-off frequency was defined according to pulse frequency fp to investigate effect laws of high-pass filtering on elastic displacement response spectrum attenuation. Numerical analyses were performed to compare causal filtering and non-causal one, and analyze effects of the relative cut-off frequency on the lowest usable frequency, pulse attribute determination and response spectrum with high damping ratio. It was shown that the larger the relative cut-off frequency, the smaller the proportional coefficient of the relative cut-off frequency to the lowest usable one; when the relative cut-off frequency is taken as 0.4fp, the proportional coefficient is close to that for general far-field ground motions; when the relative cut-off frequency is smaller than 0.4fp, the pulse attribute and pulse period have no significant changes; within a long period range, when the relative cut-off frequency is equal to or less than 0.4fp, effects of damping ratio can be ignored, while when it is larger than 0.4fp, effects of damping ratio should be considered.
关键词
脉冲型地震动 /
高通滤波 /
非因果性滤波 /
脉冲周期 /
最低可用频率
{{custom_keyword}} /
Key words
impulsive ground motion /
high-pass filtering /
non-causal filtering /
pulse period /
lowest usable frequency
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢礼立,李沙白,钱渠炕,等. 强震加速度记录的常规处理和分析方法[J]. 地震学报,1984, 6(3): 95-105.
XIE Li-li, LI Sha-bai, QIAN Qu-kang, et al. Routine processing and analyzing procedure for strong-motion accelerograms[J]. Acta Seismologica Sinica, 1984, 6(3): 95-105.
[2] LIN Yuan-zheng, ZONG Zhou-hong, TIAN Shi-zhu, et al. A new baseline correction method for near-fault strong-motion records based on the target final displacement[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 27–37.
[3] 周宝峰,温瑞智,杨永强,等. 滤波在强震记录处理中的探讨[J]. 土木建筑与环境工程学报,2010, 32(增) : 107-109.
ZHOU Bao-feng, WEN Rui-zhi, YANG Yong-qiang, et al. Application of Filtering in Strong Earthquake Record Processing[J]. Journal of Chongqing Jianzhu University, 2010, 32(Supplement): 107-109.
[4] 周宝峰,温睿智,谢礼立. 非因果滤波器在强震数据处理中的应用[J]. 地震工程与工程振动,2012, 32(2): 25-34.
ZHOU Bao-feng, WEN Rui-zhi, XIE Li-li, et al. Acausal filter in the strong motion records processing[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(2): 25-34.
[5] 周继磊,杨迪雄,陈国海. 近断层脉冲型地震动功率谱特性分析[J]. 世界地震工程,2017, 33(1): 20-28.
ZHOU Ji-lei,YANG Di-xiong, CHEN Guo-hai. Characteristic analysis of power spectrum for near-fault impulse type ground motion. World Earthquake Engineering, 2017, 33(1): 20-28.
[6] Boore DM, Akkar S. Effect of causal and acausal filters on elastic and inelastic response spectra[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(11): 1729-1748.
[7] Oppenheim AV, Willsky AS, Nawab SH. 信号与系统(第二版) [M]. 刘树棠译. 西安:西安交通大学出版社, 1998.
Oppenheim AV, Willsky AS, Nawab SH. Signals and Systems, Second Edition[M]. LIU Shu-tang. XI’AN: XI’AN JIAOTONG University Press, 1998.
[8] Akkar S, Bommer JJ. Influence of long-period filter cut-off on elastic spectral displacements[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(9): 1145-1165.
[9] Boore DM, Bommer JJ. Processing of strong-motion accelerograms: needs, options and consequences[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 93-115.
[10] Jones J, Kalkan E, Stephens C, et al. Processing and Review Interface for Strong-Motion Data (PRISM)—Methodology and Automated Processing, Version 1.0.0[R]. U.S. Geological Survey Open-File Report, 2017–1008, 81 p. Menlo Park, California: United States Department of the Interior Geological Survey, 2017.
[11] Baker JW. Quantitative classification of near fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97(5): 1486-1501.
[12] 周宝峰. 强震观测中的关键技术研究[D]. 中国∙哈尔滨:中国地震局工程力学研究所,2012.
ZHOU Bao-feng. Some Key Issues on the Strong Motion Observation[D]. Harbin∙China: Institute of Engineering Mechanics, China Earthquake Administration, 2012.
[13] 徐明华,吴先忠,李瑞,等. 阿姆河右岸区块盐下地震资料叠前保幅高分辨率处理[J]. 天然气工业,2010, 30(5): 26-29.
XU Ming-hua, WU Xian-zhong, LI Rui, et al. Amplitude preserving high resolution pre-stack processing of pre-salt seismic data in the Amu Darya Right Bank Block, Turkmenistan[J]. Natural Gas Industry, 2010, 30(5): 26-29.
[14] Boore DM, Stephens CD, Joyner WB, et al. Comments on baseline correction of digital strong-motion data: Examples from the 1999 Hector Mine, California, Earthquake[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1543-1560.
[15] Boore DM. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 1199-1211.
[16] 徐扬,周正华. 强震动观测合作组织关于强震动记录处理和发布的准则与建议及其注解[J]. 国际地震动态,2009(9): 28-42.
XU Yang, ZHOU Zheng-hua. Guidelines and Recommendations for Strong-Motion Record Processing and Commentary of COSMOS[J]. Recent Developments in World Seismology, 2009(9): 28-42.
[17] Stephens CD, Boore DM. ANSS/NSMP strong-motion record processing and procedures[R]. Richmond, California: Workshop on Strong-Motion Record Processing, Consortium of Organizations for Strong-Motion Observation Systems (COSMOS), 2004.
[18] Boore DM. On Pads and Filters: Processing Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2005, 95(2): 745-750.
[19] Converse AM, Brady AG. BAP—Basic strong-motion accelerogram processing software, Version 1.0[R]. U.S. Geological Survey Open-File Report No. 92-296A, 174 p, Menlo Park, California: United States Department of the Interior Geological Survey, 1992.
[20] Ancheta TD, Darragh RB, Stewart JP, et al. PEER NGA-West2 Database[EB/OL]. https://peer.berkeley.edu /sites/default/files/webpeer-2013-03-timothy_d._ancheta_robert_b._darragh_jonathan_p._stewart_emel_seyhan.pdf, 2013.
[21] 杜永峰,徐天妮,洪娜. 不同震源机制的近断层脉冲型地震动频谱特性及强度指标研究[J]. 土木工程学报,2017, 50(5): 85-91.
DU Yong-feng, XU Tian-ni, HONG Na. Spectral and intensity indices of near-fault ground motions based on different focal mechanisms[J]. Civil Engineering Journal, 2017, 50(5): 85-91.
[22] Pu W, Kasai K, Kabando EK, et al. Evaluation of the damping modification factor for structures subjected to near-fault ground motions[J]. Bulletin of Earthquake Engineering, 2016, 14(6): 1519-1544.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}