耦合吸振器的正负刚度并联系统的隔振性能研究

刘彦琦1,徐龙龙2,顾黄森2,嵇雯2,宋春芳2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 207-214.

PDF(1962 KB)
PDF(1962 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 207-214.
论文

耦合吸振器的正负刚度并联系统的隔振性能研究

  • 刘彦琦1,徐龙龙2,顾黄森2,嵇雯2,宋春芳2
作者信息 +

Isolation performance of a positive and negative stiffness parallel system of coupled absorber

  • LIU Yanqi1,  XU Longlong2, GU Huangsen2,  JI Wen2,  SONG Chunfang2
Author information +
文章历史 +

摘要

基于动力吸振原理,设计了耦合线性吸振器的正负刚度并联隔振系统。建立了系统的动力学方程,运用平均法进行解析求解,推导了动态响应频域解析解和传递率表达式,数值分析了吸振器的质量、刚度和阻尼对耦合系统隔振性能的影响规律,并与正负刚度并联系统进行了比较。结果表明,选择合适参数的吸振器,可在保有正负刚度并联系统的优良隔振性能的基础上,降低一定频域内被隔振体的振幅,减小系统起始隔振频率,扩大隔振频带宽,改善低频隔振效果。

Abstract

Based on the principle of dynamic vibration absorption, a positive and negative stiffness parallel vibration isolation system of linear coupled vibration absorber was designed. The system’s dynamic equations were established and solved analytically with the averaging method. The frequency domain analytical solutions of the system’s dynamic response and the expression of the transmissibility were derived. The effect laws of mass, stiffness and damping of the absorber on the coupled system’s vibration isolation performance were numerically analyzed and compared with those of the positive and negative stiffness parallel system. The results showed that choosing vibration absorber with suitable parameters can reduce amplitudes of the isolated body  within a certain frequency range, reduce the system’s  initial vibration isolation frequency, expand the isolation frequency bandwidth and improve the low-frequency isolation effect based on maintaining excellent vibration isolation effect of the positive and negative stiffness parallel system.

关键词

吸振器 / 正负刚度并联 / 耦合 / 动态响应 / 隔振性能

Key words

vibration absorber / positive and negative stiffness in parallel / coupled / dynamic response / vibration isolation performance

引用本文

导出引用
刘彦琦1,徐龙龙2,顾黄森2,嵇雯2,宋春芳2. 耦合吸振器的正负刚度并联系统的隔振性能研究[J]. 振动与冲击, 2020, 39(13): 207-214
LIU Yanqi1, XU Longlong2, GU Huangsen2, JI Wen2, SONG Chunfang2. Isolation performance of a positive and negative stiffness parallel system of coupled absorber[J]. Journal of Vibration and Shock, 2020, 39(13): 207-214

参考文献

[1]        Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J]. Journal of Sound and Vibration, 2007, 301(3): 678-689.

[2]        Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29.

[3]       白晓辉, 白鸿柏, 郝慧荣, . 正负刚度并联机构动力学分析及隔振仿真 [J]. 机械工程师, 2009, (11): 87-89.
Bai Xiaohui, Bai Hongbai, Hao Huirong, et al. The dynamic analysis and simulation of positive and negative stiffness in parallel [J]. Mechanical Engineer, 2009, (11): 87-89. (in Chinese)

[4]        Li Q, Zhu Y, Xu D F, et al. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane [J]. Journal of Mechanical Science and Technology, 2013, 27(3): 813-824.

[5]        Meng L S, Sun J G, Wu W J. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element [J]. Shock and Vibration, 2015: 1-19.

[6]        Sun X T, Xu J, Jing X J, et al. Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control [J]. International Journal of Mechanical Sciences, 2014, 82(1): 32-40.

[7]       李俊, 金咸定. 动力吸振器的宽带数值优化设计 [J]. 振动与冲击, 2001, 20(2): 16-18.
Li Jun, Jin Xianding.
Numerical optimal design for broadband dynamic absorber [J]. Journal of Vibration and shock, 2001, 20(2): 16-18. (in Chinese)

[8]        曹银萍, 石秀华. 动力吸振技术工作原理及其在鱼雷减振中的应用 [J]. 机电一体化, 2009, (2): 73-75.
Cao Yingping, Shi Xiuhua. The principle of dynamic shock-absorption technology and it
s application on torpedoes [J]. Mechatronics, 2009, (2): 73-75. (in Chinese)

[9]        高强, 房祥波, 赵艳青,. 变质量动力吸振器及其减振性能 [J]. 长安大学学报(自然科学版), 2013, 33(5): 109-112.
Gao Qiang, Fang Xiangbo, Zhao Yanqing, et al. Variable mass dynamic vibration absorber and its performance of vibration reduction [J]. Journal of Chang
an University (Natura1 Science Edition), 2013, 33(5): 109-112. (in Chinese)

[10]     金超武, 王璠, 汪蕾, . 磁悬浮式动力吸振器减振性能的研究 [J]. 振动工程学报, 2017, 30(6): 1038-1044.
Jin Chaowu, Wang Fan, Wang Lei, et al. Research on vibration reduction performance of magnetic suspension dynamic vibration absorber [J]. Journal of Vibration Engineering, 2017, 30(6): 1038-1044. (in Chinese)

[11]     于尧治, 陶杰, 恽伟君, . 有阻尼主系统的动力吸振器及其实船应用 [J]. 中国造船, 1982, (4): 78-85.
Yu Yaozhi, Tao Jie. Yun Weijun, et al. The dynamic absorber of the principal system with damping and application in ship [J]. Ship Building of China, 1982, (4): 78-85. (in Chinese)

[12]     Acar M A, Yilmaz C. Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism [J]. Journal of Sound and Vibration, 2013, 332(2): 231-245.

[13]     Shen Y J, Chen L, Yang X F, et al. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension [J]. Journal of Sound and Vibration, 2016, 361: 148-158.

[14]     Liu M C, Gu F H, Huang J H , et al. Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor [J]. Energies, 2017, 10(12): 2069.

[15]     Gebai S, Hammoud M, Hallal A, et al. Tremor reduction at the palm of a parkinsons patient using dynamic vibration absorber [J]. Bioengineering, 2016, 3(3): 1-21.

[16]     陈实泉. 基于自适应控制的直升机动力吸振器设计 [D]. 南京航空航天大学, 2013: 1-9.
Chen Shiquan. Design of helicopter dynamic vibration absorber based on adaptive control [D]. Nanjing University of Aeronautics and Astronautics, 2013: 1-9. (in Chinese)

[17]     Zhou J X, Wang X L, Xu D L, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms [J]. Journal of Sound and Vibration, 2015, 346: 53-69.

[18]     徐道临, 张月英, 周加喜, . 一种准零刚度隔振器的特性分析与实验研究 [J]. 振动与冲击, 2014, 33(11): 208-213.
Xu Daolin, Zhang Yueying, Zhou Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zeo stiffness [J]. Journal of Vibration and Shock, 2014, 33(11): 208-213. (in Chinese)

[19]     宋春芳, 徐龙龙, 刘彦琦. 含水平非线性弹簧的准零刚度隔振系统的力传递率研究 [J]. 应用力学学报, 2019, 36(2): 356-363.
Song Chunfang, Xu Longlong, Liu Yanqi. The force transmissibility of a quasi-zero stiffness isolation system with horizontal nonlinear springs [J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 356-363. (in Chinese)

[20]     Yang J, Xiong Y P, Xing J T. Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base [J]. International Journal of Mechanical Sciences, 2016, 115-116: 238-252.

[21]     Cheng C, Li S M, Wang Y, et al. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping [J]. Nonlinear Dynamics, 2016, 87(4): 1-13.

[22]   Crede C E, Ruzicka J E. Theory of vibration isolation [M]. Shock and Vibration Handbook, New York, 1996.


PDF(1962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/