在落锤式冲击力校准系统中,针对非刚体的落锤测量点与撞击点的冲击力不相等会产生测量误差的问题,提出了基于载荷重构的冲击力校准方法。该方法采用r阶累加预测模型对测量响应进行滤波;通过落锤核函数矩阵的正则化,建立测量点与撞击点之间的载荷重构模型,实现冲击力测量误差的补偿。利用本文方法进行冲击力测量实验,实验表明本文方法的峰值相对误差(PRE)为0.6%,相对误差(RE)为3.1%;传统测量方法的PRE为5.7%,RE为6.8%,本文方法的PRE和RE分别比传统测量方法改善89.2%和54.8%。本文方法能有效降低冲击力的测量误差。
Abstract
The error of the Impact Force Measurement System comes from the force difference between the measuring point and the collision point because the drop hammer is not a rigid structure. To overcome this error, an calibration method is proposed based on load reconstruction. First, a rth order grey prediction model is applied to filter the structural response on the measuring point of the drop hammer. Second, the load reconstruction model between the measuring point and the collision point is built by the regularization of the kernel matrix. The experimental result shows that the Peak Relative Error (PRE) and the Relative Error (RE) of this method are 0.6% and 3.1% while that of the traditional method are 5.7% and 6.8%. It demonstrates that our suggested method can reduce the PRE by 89.2% and the RE by 54.8% compared with the traditional method. Therefore, Our suggested method is superior to the traditional method.
关键词
冲击力测量 /
误差补偿 /
载荷重构 /
Tikhonov正则化
{{custom_keyword}} /
Key words
impact force measurement /
error compensation /
load reconstruction /
Tikhonov regularization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Moljevic S. Influence of quality infrastructure on regional development[J]. International journal for quality research, 2016, 10(2):433-452.
[2] 王宇,张力,洪宝林,等. 正弦力校准中降低质量块振动响应不均匀影响的设计方案[J]. 振动与冲击, 2010, 30(3): 1-3.
Wang Yu, Zhang Li, Hong Bao-lin, et al. Mass design plan in sinusoidal force calibration to avoid nonuniform vibration response[J]. Journal of vibration and shock, 2010, 30(3):1-3.
[3] 江文松,王中宇,张力,等. 力传感器惯性质量的改进MonteCarlo校准方法 [J]. 北京航空航天大学学报, 2018, 44(2): 350-356.
Jiang Wen-song, Wang Zhong-yu, Zhang Li, et al. Inertia mass of force transducers based on a modified Monte Carlo calibration method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 350-356.
[4] Prilepko Y M. Calibration and Validation of Dynamic Force Transducers[J]. Measurement techniques, 2017, 60(7):691-695.
[5] Trevor E, Sascha E, Ian S. Estimating dynamic mechanical quantities and their associated uncertainties: application guidance[J]. Metrologia, 2019, 56(1):01500201-01500221.
[6] Jacquelin E, Bennani A, Hamelin P. Force Reconstruction: Analysis and Regularization of a Deconvolution Problem[J]. Journal of sound vibration, 2003, 265 (3): 81–107.
[7] Aucejo M, Desmet O. A Multiplicative Regularization for Force Reconstruction [J]. Mechanical systems and signal processing, 2017, 85(1): 730-745.
[8] Aucejo M, Desmet O, Deu J F. On a space-time regularization for force reconstruction problems[J]. Mechanical systems and signal processing, 2019, 118:549-567.
[9] Qiao B, Zhang X, Gao J, et al. Sparse Deconvolution for the Large-Scale Ill-Posed Inverse Problem of Impact Force Reconstruction [J]. Mechanical systems and signal processing, 2017, 83 (1): 93-115.
[10] Qiao B, Mao Z, Liu J, et al. Group sparse regularization for impact force identification in time domain[J].Journal of sound and vibration,2019,445(14): 44-63.
[11] Jiang W S, Wang Z Y, Lv J. A fractional order accumulate regularization filter for force reconstruction [J]. Mechanical systems and signal processing, 2018, (101C): 405-423.
[12] Jiang W S, Wang Z Y. Reconstruction of Vibrating Displacement with Limited Test Samples Based on a Modified Non-equidistant Model [J]. Journal of grey system, 2017, 30(1):208-220.
[13] Jiang W S, Wang Z Y, Zhang Q. Surface Vibration Displacement Prediction Based on a Non-equidistant Grey Model [C]. Conference on. systems, man, and cybernetics, IEEE Transactions, 2017: 3501-3505.
[14] Chang X, Yan Y, Wu Y. Study on solving the ill-posed problem of force load reconstruction[J].Journal of sound and vibration, 2019, 440:186-201.
[15] 刘杰. 动态载荷识别的计算反求技术研究[D]. 武汉:湖南大学, 2011:32-33.
Liu J. Research on computational inverse techniques in dynamic load identification [D]. Wuhan: Hunan University, 2011:32-33.
[16] JJF 1657-2017, 落锤式冲击力标准装置校准规范[S].北京:国家质量监督检验检疫总局, 2017.
JJF 1657-2017, Calibration specification for falling-hammer impact force stand equipment[S]. Beijing: State administration for market regulation, 2017.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}