针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,论文提出一种新的分析方法—辛几何模态分解(Symplectic Geometry Mode Decomposition,SGMD)方法,该方法采用辛矩阵相似变换求解Hamilton 矩阵的特征值,并利用其对应的特征向量重构辛几何分量(Symplectic Geometry Component,SGC),从而对复杂信号去噪的同时进行自适应分解,得到若干个SGC。通过仿真信号模型,研究了SGMD方法的分解性能、噪声鲁棒性,分析了分量信号的频率比、幅值比和初相位差对SGMD方法分解能力的影响。将SGMD方法应用于齿轮故障实验数据分析,结果表明SGMD方法能够有效地对待分解信号完成分解并剔除噪声信号。
Abstract
Aiming at the shortages of empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and local characteristic scale decomposition (LCD), a new analysis method, called Symplectic Geometry Mode Decomposition (SGMD), is proposed in the paper. In SGMD, the symplectic matrix similarity transformation is used to solve the eigenvalues of the Hamiltonian matrix and the Symplectic Geometry Component (SGC) is reconstructed with the corresponding eigenvectors. Therefore, the complicated signal is de-noised and adaptively decomposed into some Symplectic Geometry Components. By using simulation signal model, the decomposition performance and noise robustness of SGMD method is researched. The effect of frequency ratio, amplitude ratio, and initial phase difference with components on decomposition capacity of SGMD are studied. The proposed method is applied to the gear fault test data analysis. The results show that the SGMD method can decompose the decomposed signal effectively with eliminate the noise signal.
关键词
辛几何模态分解 /
辛矩阵相似变换 /
辛几何分量 /
分解能力
{{custom_keyword}} /
Key words
Symplectic Geometry Mode Decomposition /
symplectic matrix similarity transformation /
Symplectic Geometry Component /
decomposition ability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHENG Junsheng, ZHANG Kang, YANG Yu. An order tracking technique for the gear fault diagnosis using local mean decomposition method [J]. Mechanism and Machine Theory, 2012, 55(55):67-76.
[2] CHENG Junsheng, YU Dejie, TANG Jiashi, et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis [J]. Mechanism and Machine Theory, 2008, 43(6): 712-723.
[3] YANG Yu, WANG Huanhuan, CHENG Junsheng, et al. A fault diagnosis approach for roller bearing based on VPMCD under variable speed condition [J]. Measurement, 2013, 46(8):2306-2312.
[4] CHENG Junsheng, PENG Yanfeng, YANG Yu, et al. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2017, 85:947-962.
[5] WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 (1):1–41.
[6] ZHENG Jinde. Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination [J]. Archives of Civil and Mechanical Engineering, 2016,16(4):784-794.
[7] 程军圣, 王健, 桂林. 改进的EEMD方法及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2018, 37(16): 51-56
CHENG Junsheng, WANG Jian, GUI Lin. An improved EEMD method and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(16): 51-56.
[8] MARK G. Frei, IVAN Osorio. Intrinsic time-scale decomposition: time-freqeucny-energy analysis and real-time filtering of non-stationary signals [J]. Proceedings of the Royal Society. A, 2007, 463: 321-342.
[9] 程军圣, 郑近德, 杨宇. 基于局部特征尺度分解的经验包络解调方法及其在机械故障诊断中的应用[J].机械工程学报, 2012, 48(19):87-94.
CHENG Junsheng ZHENG Jinde YANG Yu. Empirical Envelope Demodulation Approach Based on Local Characteristic-scale Decomposition and Its applications to Mechanical Fault Diagnosis [J]. Chinese Journal of Mechanical Engineering, 2012, 48(19):87-94.
[10] ZHENG Jinde, PAN Haiyang, Yang Shubao, et al. Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis [J]. Signal Processing, 2017,130: 305-314
[11] LEI Min, MENG Guang, A Noise Reduction Method for Continuous Chaotic Systems Based on Symplectic Geometry [J]. European Urology Supplements. 2015, 3(1): 13-24.
[12] LEI Min, WANG Zhizhong, FENG Zhenjin. A method of embedding dimension estimation based on symplectic geometry [J]. Physics Letters A, 2002, 303(2–3):179–189,
[13] MICHAEL Feldman. Analytical basics of the EMD: Two harmonics decomposition [J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2059-2071.
[14] PIETRO Bonizz, JOEL M H Karel. Singular spectrum decomposition: a new time series decomposition [J]. Advances in Adaptive Data Analysis, 2014,6 (4):107-109
[15] Kar S, Maity S. Detection of neovascularization in retinal images using mutual information maximization[J]. Comput Electr Eng. 2017, 51:36-59.
[16] YANG Yu, PAN Haiyang, MA Li, et al. A roller bearing fault diagnosis method based on the improved ITD and RRVPMCD[J]. Measurement, 2014, 55:255-264.
[17] YANG Yu, PAN Haiyang, MA Li, et al. A fault diagnosis approach for roller bearing based on improved intrinsic timescale decomposition de-noising and kriging-variable predictive model-based class discriminate [J]. Journal of Vibration and Control, 2014, 22(5):1-11.
[18] 郑近德, 程军圣, 曾鸣等.广义经验模态分解性能分析与应用[J].振动与冲击. 2015,34(3):123-128.
ZHENG Jinde, CHENG Junsheng, ZENG Ming, et al. Performance analysis and application of generalized empirical mode decomposition[J]. Journal of Vibration and Shock. 2015,34(3):123-128.
[19] 杨宇, 曾鸣, 程军圣. 局部特征尺度分解方法及其分解能力研究[J]. 振动工程学报, 2012, 25(5), 602-609.
YANG Yu, ZENG Ming, CHENG Junsheng. Research on local characteristic-scale decomposition and its capacities [J]. Journal of Vibration Engineering, 2012, 25(5), 602-609.
[20] 杨宇, 曾鸣, 程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程,2013,24(2):196-201.
YANG Yu, ZENG Ming, CHENG Junsheng. Research on local characteristic scale decomposition and its stopping criteria[J]. China Mechanical Engineering,2013,24(2):196-201.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}