改进多尺度符号动力学信息熵及其在行星变速箱特征提取中的应用

丁闯1,冯辅周2,张兵志2,3,吴守军2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 97-102.

PDF(984 KB)
PDF(984 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (13) : 97-102.
论文

改进多尺度符号动力学信息熵及其在行星变速箱特征提取中的应用

  • 丁闯1,冯辅周2,张兵志2,3,吴守军2
作者信息 +

MMSDE and its application in feature extraction of a planetary gearbox

  • DING Chuang1, FENG Fuzhou2, ZHANG Bingzhi2,3, WU Shoujun2
Author information +
文章历史 +

摘要

针对行星变速箱在运行时产生的非线性非平稳振动,且故障特征信号微弱等问题,提出一种新的特征提取方法——改进多尺度符号动力学信息熵。在传统的符号动力学信息熵原理的基础上,通过改进传统方法的符号化过程,在考虑条件概率情况下计算信息熵,并引入多尺度概念,使得所提特征具有更大优势。最后求解行星变速箱故障模拟试验台采集到的三种状态下的振动信号改进多尺度符号动力学信息熵,并基于提出的特征评价指标对改进多尺度符号动力学信息熵、时频熵、排列熵、样本熵等特征的计算结果进行了对比。结果表明,该方法能够有效的提取行星变速箱运行状态特征,具有更高的敏感度。

Abstract

Aiming at nonlinear non-stationary vibration and weak fault feature signals caused in planetary gearbox operation, a new feature extraction method called the modified multi-scale symbolic dynamic entropy (MMSDE) was proposed here. Based on traditional symbolic dynamic entropy (SDE) principles, traditional method’s symbolization process was improved, information entropy was calculated considering conditional probability, and the multi-scale concept was introduced to make extracted features have greater advantages. Finally, MMSDEs for vibration signals under 3 states collected on a planetary gearbox fault simulation test platform were solved. The results were compared with corresponding time-frequency entropy, permutation one and sample one based on feature evaluation indexes proposed here. The results showed that the proposed method can effectively extract a planetary gearbox’s operational state features with a higher sensitivity.

关键词

改进多尺度符号动力学信息熵 / 行星变速箱 / 特征提取 / 特征评价

Key words

modified multi-scale symbolic dynamic entropy (MMSDE) / planetary gearbox / feature extraction / feature evaluation

引用本文

导出引用
丁闯1,冯辅周2,张兵志2,3,吴守军2. 改进多尺度符号动力学信息熵及其在行星变速箱特征提取中的应用[J]. 振动与冲击, 2020, 39(13): 97-102
DING Chuang1, FENG Fuzhou2, ZHANG Bingzhi2,3, WU Shoujun2. MMSDE and its application in feature extraction of a planetary gearbox[J]. Journal of Vibration and Shock, 2020, 39(13): 97-102

参考文献

[1]     Yaguo Lei, Detong Kong, Jing Lin, et, al. Fault detection of planetary gearboxes using new diagnostic parameters[J]. Measurement science and technology 2012, 23: 1-10.

[2]     于德介, 张嵬, 程军圣, . 基于EMD的时频熵在齿轮故障诊断中的应用[J]. 振动与冲击, 2005, 36(1):26-29.YU Dejie, ZHANG Wei, CHENG Junsheng, etc. Application of time-frequency entropy to gear fault diagnosis based on EMD[J].Journal of vibration and shock, 2005, 36(1):26-29.

[3]     苏文胜,王奉涛,朱泓,等. 基于小波包样本熵的滚动轴承故障特征提取[J]. 振动、测试与诊断,2011. 31(2)162-166.SU WenshengWANG FengtaoZHU Honget al. Feature extraction of rolling element bearing fault using wavelet packet sample entropy[J]. Journal of Vibration, Measurement & Diagnosis201131(2)162-166.

[4]     冯辅周,饶国强,司爱威,. 排列熵算法研究及其在振动信号突变检测中的应用[J].振动工程学报.2012252):221-224.

FENG Fuzhou, RAO Guoqiang, SI Aiwei. Research and application of the arithmetic of PE in testing the sudden change of vibration signal[J]. Journal of vibration engineering, 2012252):221-224.

[5]     Kurths J, Voss A, Sapatin P, et al. Quantitative analysis of heart rate variability[J].Chao,1995,(5):88-94.

[6]     张华,曾文韬,鄢威. 基于符号动力学信息熵与SVM的液压泵故障诊断[J].振动、测试与诊断, 2017,324:288-293.

ZHANG Hua, ZENG Wentao, YAN Wei. Fault diagnosis of hydraulic pump based on symbolic dynamics entropy and SVM[J].Journal of Vibration, Measurement&Diagnosis, 2017,324:288-293.

[7]     李洪伟,周云龙,任素龙,. 符号动力学熵在液两相流型电导信号分析中的应用[J].化工学报, 2012,6311:3486-3492.

Li Hongwei, Zhou Yunlong, Ren Sulong, et, al. Application of conductance signals analysis of gas-liquid two-phase flow patterns based on symbolic dynamic entropy[J].Journal of Chemical Industry and Engineering, 2012,6311:3486-3492.

[8]     J. Wang, T. Li, R. Xie, X. Wang, Y. Cao, Fault feature extraction for multiple electrical faults of aviation electro-mechanical actuator based on symbolic dynamics entropy, in: 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2015, pp. 1–6.

[9]     C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob. Comput. Commun. Rev. 5 (1) (2001) 3–55.

[10]  Yongbo Li, Yuantao Yang, Guoyan Li, et, al. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection[J]. Mechanical Systems and Signal Processing. 2017,91:295-312.

[11]  Y Li, M Xu, Y Wei, et, al. Health condition monitoring and early fault diagnosis of bearings using SDF and intrinsic characteristic-scale decomposition, IEEE Trans. Instrum, Meas. 2016,pp(99):1-16.

[12]  饶国强, 冯辅周, 司爱威, .排列熵算法参数的优化确定方法[J].振动与冲击.2014,33(1):188-193.

RAO Guo-qiang, FENG Fu-zhou, SI Ai-wei. Method for optimal determination of parameters in permutation entropy algorithm[J]. Journal of vibration and shock, 2014,33(1):188-193.

[13]  S.-D.Wu, C.-W.Wu, K.-Y, S.-G.Lin. Modified multiscale entropy for short-term time series analysis[J]. Phys.Stat.Mech.Appl. 2013, 92(23):5865-5873.

[14]  程哲, 直升机传动系统行星轮系损伤建模与故障预测理论及方法研究[D].长沙:国防科技大学机械工程, 2011, 61-62.

Cheng Zhe, Theory and method on damage modeling and prognostics for planetary gear set of helicopter transmission system[D]. Changsha: National University of Defense Technology, 2011:61-62.


PDF(984 KB)

Accesses

Citation

Detail

段落导航
相关文章

/