基于概率论的爆破振动安全评估与控制

王林峰1,2,邓冰杰1,2,莫诎2,3,赵精富4,肖弘光4

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 122-129.

PDF(1053 KB)
PDF(1053 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 122-129.
论文

基于概率论的爆破振动安全评估与控制

  • 王林峰1,2,邓冰杰1,2,莫诎2,3,赵精富4,肖弘光4
作者信息 +

Safety assessment and control of blasting vibration based on the probability theory

  • WANG Linfeng1,2,DENG Bingjie1,2,MO Qu2,3,ZHAO Jingfu4,XIAO Hongguang4
Author information +
文章历史 +

摘要

爆破振动速度的预测及振动安全控制一直是爆破施工关注的热点问题。选用基本公式作为爆破振动速度预测模型,基于最小二乘法原理求解参数 K,a,b ;考虑爆破振动的随机性,定义了爆破振动速度相对误差(REBVV),假设REBVV服从均值为0的正态分布,利用正态分布的传递性,建立了爆破振动速度的分布规律模型;并提出采用广义爆破振动速度相对误差方差来代替爆破振动速度相对误差以提高实测数据的利用率;引入概率论中的置信度水平这一概念,建立了一套爆破振动安全控制与评估模型。取置信度水平为95%,基于建立的安全控制与评估模型给出了依托工程重点控制区段爆破安全施工建议。

Abstract

The prediction of blasting vibration speed and vibration safety control are always the focus of attention in blasting construction.A basic formula was selected as the blasting vibration velocity prediction model, and the parameters K,a,b  were solved based on the principle of least square method.Considering the randomness of blasting vibration, the relative error of blasting vibration velocity (REBVV) was defined.Assuming that the REBVV obeys the normal distribution with the mean value of 0, the distribution model of blasting vibration velocity was deduced by virtue of the transferability of the normal distribution.To improve the utilization ratie of measured data, the relative error variance of generalized blasting vibration velocity was proposed to replace the relative error variance of blasting vibration velocity.By introducing the concept of confidence level in the probability theory, a safety control and evaluation model of blasting vibration was established.Taking the confidence level as 95%, based on the established safety control and evaluation model, suggestions about the blasting construction safety for key controlled sections of the project were provided.

关键词

爆破振动 / 速度预测模型 / 正态分布 / 置信度水平 / 安全控制

Key words

blasting vibration / velocity prediction model / normal distribution / confidence level / safety control

引用本文

导出引用
王林峰1,2,邓冰杰1,2,莫诎2,3,赵精富4,肖弘光4. 基于概率论的爆破振动安全评估与控制[J]. 振动与冲击, 2020, 39(14): 122-129
WANG Linfeng1,2,DENG Bingjie1,2,MO Qu2,3,ZHAO Jingfu4,XIAO Hongguang4. Safety assessment and control of blasting vibration based on the probability theory[J]. Journal of Vibration and Shock, 2020, 39(14): 122-129

参考文献

[1] 卢文波, Hustrulid W. 质点峰值振动速度衰减公式的改进[J].工程爆破,2002,8(3):1-4.
Lu Wenbo,Hustrulid W. An improvement to the equa-tion for the attenuation of the peak particle velocity [J]. Engineering Blasing,2002,8(3):1-4.
[2] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB6722—2014爆破安全规程[S].北京:中国标准出版社,2015.
[3] Duvall, W. I., Petkof, B. Spherical propagation of explosion-generated strain pulses in rock[R]. USBM, RI-5438,1958:21-22.
[4] Indian Standard Institute,Criteria for safety and design of structures subjected to underground blast [S]. Bulletin IS-6922.1973
[5] Langefors U,Kihlstrom B,Westerberg H. Ground vibrations in blasting[J]. WaterPower,1958 (9):335-338.
[6] 易长平,冯林,王刚,黄立茂.爆破振动预测研究综述[J].现代矿业,2011,27(05):1-5.
Yi Changping,Feng Lin,Wang Gang,et al.A review of research on blasting vibration prediction [J].Modern Mining,2011, 27(05):1-5.
[7] 程康,沈伟,陈庄明,等.工程爆破引起的振动速度计算经验公式及应用条件探讨[J].振动与冲击,2011, 30(06):127-129.
Cheng Kang,Shen Wei,Chen Zhuangming,et al.Inquiry into calculation formula for vibration velocity induced by engineering blasting and its application conditions[J]. Journal of vibration and shock,2011, 30(06):127-129.
[8] 史秀志,武永猛,唐礼忠,等.偏最小二乘回归神经网络模型在爆破振动峰值速度预测中的应用[J].振动与冲击,2013,32(12):45-49.
Shi Xiuzhi,Wu Yongmeng,Tang Lizhong,et al. Application of neural network model with partial least-square regression in prediction of peak velocity of blasting vibration[J].Journal of Vibration and Shock, 2013,32(12):45-49.
[9] 张在晨,林从谋,黄志波,等.隧道爆破近区振动的预测方法[J].爆炸与冲击,2014,34(3):367-372.
ZHANG Zaichen,LIN Congmou,HUANG Zhibo,et al.Prediction of blasting vibration of area near tunnel blasting source[J].Explosion and Shock Waves,2014,34(3):367-372.
[10] 刘亚群,李海波,裴启涛,等.基于灰色关联分析的遗传神经网络在水下爆破中质点峰值振动速度预测研究[J].岩土力学,2013,34(S1):259-264.
Liu Yaqun,Li Haibo,Pei Qitao,et al.Prediction of peak particle velocity induced by under-water blasting based on the combination of grey relational analysis and genetic neural network[J].Rock and Soil Mechanics, 2013,34(S1): 259-264.
[11] 史秀志,陈新,史采星,等.基于GEP的爆破峰值速度预测模型[J].振动与冲击,2015,34(10):95-99.
Shi Xiuzhi,Chen Xin,Shi Caixing,et al.Prediction model for blasting-vibration-peak-speed based on GEP[J]. Journal of vibration and shock,2015,34(10):95-99.
[12] 陈秋松,张钦礼,陈新,等.基于GRA-GEP的爆破峰值速度预测[J].中南大学学报(自然科学版),2016,47 (07):2441-2447.
Chen Qiusong,Zhang Qinli,Chen Xin,et al.Prediction of blasting vibration peak speed based on GRA−GEP[J]. Journal of central south University(Science and Technology), 2016,47(07):2441-2447.
[13] 谢烽,韩亮,刘殿书,等.基于叠加原理的隧道爆破近区振动规律研究[J].振动与冲击,2018,37(02):182-188.
Xie Feng,Han Liang,Liu Dianshu,et al.Vibration law analysis for a tunnel’s field near blasting based on waveform superposition theory[J].Journal of Vibration and Shock,2018, 37(02):182-188.
[14] 郑皓文,赵根,胡英国,等.基于ACOR-LSSVM算法的爆破振动速度预测[J].爆破,2018,35(03):154-158.
Zheng Haowen,Zhao GEN,Hu Yingguo,et al.Blasting vibration velocity prediction based on ACOR-LSSVM algorithm[J].Blasting,2018,35(03):154-158.
[15] Ali Kahriman.Analysis of parameters of ground vibra-tion produced from bench blasting at a limestone quarry[J].Soil Dynamics and Earthquake Engineering, 2004,24:887–892.
[16] Nateghi R. Prediction of ground vibration level induced by blasting at different rock units [J].International Journal of Rock Mechanics and Mining Science, 2011, 48(6):899-908.
[17] 高振儒,雷俊丽,范磊,等.爆破振动强度预报的置信度和安全系数[J].工程爆破, 2005,11(3):69-71.
Gao Zhenru,Lei Junli,Fan Lei,et al.Faith degree and safety coefficient of predicting blasting vibration intensity[J]. Engineering Blasting,2005,11(3): 69-71.
[18] 贾晓强,方向,张卫平,等.基于置信度理论的岩石爆破振动安全控制研究[J].爆破器材,2011,40(03):31-34.
Jia Xiaoqiang,Fang Xiang,Zhang Weiping,et al.Analysis on security control of rock blasting vibration based on faith degree theory[J].Explosive Materials,2011,40(03): 31-34.
[19] 李胜林, 栗曰峰, 李奎,等. 爆破振动速度预测误差的可靠性分析[J].爆破,2013,30(1):119-121.
Li Shenglin,Li Yuefeng,Li Kui, et al. Reliability analysis of estimation error in blasting vibration velocity [J]. Blasting, 2013,30(1):119-121.
[20] 梁书锋,王宇涛,刘殿书,等.爆破振动速度预测安全保证系数的确定[J].爆炸与冲击,2015,35(05):741-746.
Liang Shufeng,Wang Yutao,Liu Dianshu,et al. Deter-mination of safety coefficient for predicting blasting vibration velocity[J].Explosion and Shock Waves, 2015, 35(05):741-746.
[21] 张小军,汪旭光,王尹军等.基于正态分布的爆破振动评价与安全药量计算[J].爆炸与冲击,2018.3(网络首发).
Zhang Xiaojun,Wang Xunguang,Wang Yinjun, et al. Blasting vibration evaluation and Safety dose calcula-tion based on Normal Distribution[J].Journal of Virbration and Shock,2018.3
[22] 吕涛, 石永强, 黄诚,等. 非线性回归法求解爆破振动速度衰减公式参数[J].岩土力学,2007,28(9):1871-1878.
Lv Tao,Shi Yongqiang,Huang Cheng,et al.Study on attenuation parameters of blasting vibration by nonlinear regression analysis[J].Rock and Soil Mechanics,2007 (9):1871-1878.
[23] 胡建华,尚俊龙,罗先伟,等.单孔爆破振动监测与衰减规律多元线性化回归[J].振动与冲击,2013,32(16):49-53.
Hu Jianhua,Shang Junlong,Luo Xianwei,et al. Moni-toring of single-hole blasting vibration and detection of its attenuation law by using multiple linear regression [J]. Journal of Virbration and Shock.2013, 32(16):49-53.
[24] 饶运章,汪弘.爆破振动速度衰减规律的多元线性回归分析[J].金属矿山,2013(12):46-51.
Rao Yunzhang,Wang Hong.Multiple regression linear analysis on attenuation formula of blasting velocity[J]. Metal Mine. 2013(12):46-51.
[25] 盛骤,谢式千,潘承毅. 概率论与数理统计(第四版)[M].北京:高等教育出版社,2008.

PDF(1053 KB)

464

Accesses

0

Citation

Detail

段落导航
相关文章

/