周期分布不规则体对弹性波的二维散射

巴振宁1,2,高旭1,梁建文1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 201-213.

PDF(4110 KB)
PDF(4110 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 201-213.
论文

周期分布不规则体对弹性波的二维散射

  • 巴振宁1,2,高旭1,梁建文1,2
作者信息 +

Two-dimensional scattering of elastic waves by periodic distribution irregularities in an elastic full space

  • BA Zhenning1,2,GAO Xu1,LIANG Jianwen1,2
Author information +
文章历史 +

摘要

建立了一种基于均布线载动力格林函数的周期间接边界元方法(PIBEM),进而研究了全空间中周期分布不规则体对弹性波的散射问题。方法利用平面波入射下,各不规则体周围波场频域内仅相差一个相位的特征,仅需针对其中一个不规则体进行离散和求解,即可求得问题的解;相对于选取有限多个不规则体进行近似求解的方法,该方法具有较高精度的同时,最大限度的降低了求解自由度;在对方法正确性验证的基础上,以全空间中空洞和加塞两种模型为例开展了数值计算分析,重点探讨了空洞形状、空洞间距和加塞刚度等参数对减振效应的影响。数值分析结果表明:周期分布空洞与多个空洞的位移幅值具有差异,且频率低时差异更为显著;三种形状空洞中,周期分布圆形空洞减振效果最佳,周期分布三角形空洞减振效果最差;周期分布加塞与周期分布空洞减振原理不同,加塞通过消耗地震波的能量减振,而空洞通过阻隔地震波减振;周期分布软加塞的消能减振效果优于周期分布硬加塞。

Abstract

A periodic indirect boundary element method (PIBEM) based on the dynamic Green’s functions of uniformly distributed loads was used to study the scattering and diffraction of plane P- waves and SV-waves by periodically distributed irregular bodies in a full-space.By virtue of the fact that the dynamic responses around each of the canyons along the x-axis has the particular feature of repeating themselves with a certain delay of phase in frequency domain, the effort can be reduced to discretize and solve only a single irregular body.Compared with the method of truncating a finite number of irregular bodies for approximate solution, the method proposed in this paper has the advantages of higher precision and greater memory reduction.The accuracy of the method was verified by comparing its degenerated results with published results.Numerical calculations were performed for the periodically distributed cavities and cavities with media in frequency domain and the influences of the cavity shape, spacing and stiffness of media on the vibration-isolating effect were discussed.The numerical results show that the displacement amplitude in the case of periodically distributed cavities is different from that in the case of multiple cavities, and the difference is significant at low frequency, indicating that it is difficult to obtain accurate solutions by truncating a finite number of cavities.Among three kinds of shaped cavities, the periodically distributed circular cavities have the best vibration-isolating effect, and the periodically distributed triangular cavities have the worst.The principle of periodically distributed cavities is different from that of periodically distributed cavities with media, the later consumes the energy of seismic waves to reduce earthquake effect, while the former blocks seismic waves to reduce earthquake.The vibration-isolating effect of periodically distributed cavities with flexible media is better than that of periodically distributed cavities with rigid media.

关键词

周期分布不规则体 / 格林函数 / P波和SV波 / 散射

Key words

periodically distributed heterogeneous bodies / Green’s functions / P-waves and SV-waves / scattering and diffraction

引用本文

导出引用
巴振宁1,2,高旭1,梁建文1,2. 周期分布不规则体对弹性波的二维散射[J]. 振动与冲击, 2020, 39(14): 201-213
BA Zhenning1,2,GAO Xu1,LIANG Jianwen1,2. Two-dimensional scattering of elastic waves by periodic distribution irregularities in an elastic full space[J]. Journal of Vibration and Shock, 2020, 39(14): 201-213

参考文献

[1] Pao YH, Mow, CC. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M].New York:Crane Russak and Company, 1973.
[2] 刘殿魁, 刘宏伟. SH波散射与界面圆孔附近的动应力集中[C]. 中国力学学会现代力学与科技进步学术大会. 1997:597-604.                  
[3] Lee VW. On deformations near a circular underground cavity subjected to incident plane SH waves[J]. Proceedings of the Application of computer Methods in Engineering Conference, 1997,105:951-962.
[4] Lee VW, Trifunac MD. Response of tunnels to incident SH-waves[J]. Journal of Engineering Mechanics, American Society of Civil Engineers, 1979,105:951-962.
[5] 罗昊. 圆弧形凸起地形中圆形隧洞对平面SH波的散射解析解[D]. 天津大学, 2003.
[6] 丁美. 地下圆形衬砌隧洞对柱面SH波的散射解析解[D]. 天津大学, 2004.
[7] Lee VW, Karl J. Diffraction of SV waves by underground circular cylindrical cavities[J]. Soil Dynamics & Earthquake Engineering, 1992, 11(8):445-456.
[8] Lee VW, Karl J. On deformations near a circular underground cavity subjected to incident plane P waves. European Earthquake Engineering, 1993,7(1):29-36.
[9] 纪晓东. 地下圆形衬砌隧道对入射平面P波的散射[D]. 2002.
[10] 梁建文, 巴振宁, Lee V W. 平面P波在饱和半空间中洞室周围的散射(Ⅰ):解析解[J]. 地震工程与工程振动, 2007, 27(1):1-6.
LIANG Jianwen, BA Zhenning, LEE V W. Scattering of plane P waves around a cavity in poroelastic half-space (Ⅰ): analytical solution[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(1):1-6.
[11] Barros FCPD, Luco JE. Diffraction of obliquely incident waves by a cylindrical cavity embedded in a layered viscoelastic half-space [J]. Soil Dynamics & Earthquake Engineering, 1993, 12(3):159-171.
[12] Kattis SE, Beskos DE, Cheng AHD. 2D dynamic response of unlined and lined tunnels in poroelastic soil to harmonic body waves [J]. Earthquake Engineering & Structural Dynamics, 2010, 32(1):97-110.
[13] Stamos AA, Beskos DE. 3-D seismic response analysis of long lined tunnels in half-space [J]. Soil Dynamics & Earthquake Engineering, 1996, 15(2):111-118.
[14] Niu YQ, Dravinski M, Direct 3D BEM for scattering of elastic waves in a homogeneous anisotropic half-space [J]. Wave Motion, 2003, 38(2):165-175.
[15] 梁建文, 尤红兵. 层状半空间中洞室对入射平面P波的放大作用[J]. 地震工程与工程振动, 2005, 25(2):18-26.
LIANG Jianwen, YOU Hongbing. Amplification of plane P waves by a cavity in a layered half-space[J].  Earthquake Engineering and Engineering Vibration, 2005, 25(2):18-26.
[16] 刘中宪, 梁建文, 张贺. 弹性半空间中衬砌洞室对平面P波和SV波的散射(I)——方法[J]. 自然灾害学报, 2010, 19(4):71-76.
LIU Zhongxian, LIANG Jianwen, ZHANG He. Scattering of plane P and SV waves by a line tunnel in elastic half space(I): method[J]. Journal of Natural Disasters, 2010, 19(4):71-76.
[17] 梁建文, 胡淞淋, 刘中宪,等. 平面P波作用下半空间中三维洞室的动力响应[J]. 振动工程学报, 2017, 30(1):155-166.
LIANG Jianwen, HU Songlin, LIU Zhongxian, et al. Dynamic response of 3D cavity in elastic half-space for incident plane P waves[J]. Journal of Vibration Engineering, 2017, 30(1):155-166.
[18] 梁建文, 胡淞淋, 刘中宪,等. 平面SV波入射下弹性半空间中三维球形洞室的动力响应[J]. 岩土工程学报, 2016, 38(9):1559-1568.
LIANG Jianwen, HU Songlin, LIU Zhongxian,  et al. Dynamic response of 3D spherical cavity in elastic half-space under plane SV waves[J].Chinese Journal of Geotechnical Engineering,2016, 38(9):1559-1568.
[19] 梁建文, 胡淞淋, 刘中宪,等. 平面SH波在弹性半空间中三维洞室周围的散射[J]. 地震工程与工程振动, 2015, 1(4):40-50.
LIANG Jianwen, HU Songlin, LIU Zhongxian, et al. Scattering of plane SH waves by a 3D cavity in elastic half-space[J]. Earthquake Engineering and Engineering Vibration, 2015, 35(4):40-50.
[20] 熊体凡, 钟伟芳. 多洞室对矢量波散射引起半空间表面位移的边界元解[J]. 固体力学学报, 1999, 20(3):226-230.
XIONG Tifan, ZHONG Weifang. Ground motion due to P wave scattering bymulti-hole in half-space[J].Chinese Journal of Solid Mechanics,1999, 20(3):226-230.
[21] 梁建文, 张浩, Lee VW. 地下洞室群对地面运动影响问题的级数解答—P波入射[J]. 地震学报, 2004, 26(3):40-51.
LIANG Jianwen, ZHANG Hao, LEE V W. A series solution for surface motion amplifi-cation due to underground group cavities incident P waves[J].Acta Seismologica Sinica, 2004, 26(3):40-51.
[22] Wolf JP. Dynamic Soil-Structure Interaction, Englewood Cliffs: Prentice-Hall, 1985.
[23] Sánchez-Sesma FJ, Luzón F. Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves [J]. Bulletin of the Seismological Society of America, 1995, 85(1):269-284.
[24] 王刚, 温激鸿, 刘耀宗, 等. 任意散射体形状二维周期结构的弹性波带结构计算方法研究[J]. 功能材料, 2004, 35(z1):2257-2260.
WANG Gang, WEN Jihong, LIU Yaozong, et al. Study on the calculation of elastic wave band structure in two-dimensional phononic crystals with lattice of scatters in arbitrary shape[J].Journal of Functional Materials, 2004, 35(Sup1):2257-2260.
[25] 赵翔. 周期性纳米结构的空间光散射分布特性研究[D]. 2016.
[26] 耿方志, 张广辉, 董文锋, 唐志凯, 潘英锋. 基于HDBF的周期性金属结构电磁散射的MoM解[J]. 哈尔滨工业大学学报, 2009(7):262-264.
GENG Fangzhi, ZHANG Guanghui, DONG Wenfeng, et al. MoM solution of EM scattering by periodic metallic structures based on hybrid domain basis function[J]. Journal of Harbin Institute of Technology,2009(7):262-264.
[27] Murakami H, Luco JE. Seismic response of periodic array of structure [J]. Journal of the Engineering Mechanics Division, 1977, 103(5): 965-977.

PDF(4110 KB)

Accesses

Citation

Detail

段落导航
相关文章

/