基于非线性瞬态响应的空间站柔性太阳翼在轨载荷分析

臧旭1,2,吴松2,唐国安1,郭其威2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 22-28.

PDF(1906 KB)
PDF(1906 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 22-28.
论文

基于非线性瞬态响应的空间站柔性太阳翼在轨载荷分析

  • 臧旭1,2,吴松2,唐国安1,郭其威2
作者信息 +

Nonlinear transient on-orbit load analysis of a flexible solar array

  • ZANG Xu1,2,WU Song2,TANG Guoan1,GUO Qiwei2
Author information +
文章历史 +

摘要

针对展开面积大、机构环节多、带有柔性索/膜结构的空间站太阳翼,建立精细的有限元模型、分析其在轨高强度激励条件下的瞬态变形和应力是强度设计所必须完成的环节。利用“间隙-接触”(Gap)单元的力学特性,将其倒置后作为钢丝绳与收藏箱的连接单元,一举解决了柔性阵面预紧力施加、钢丝绳不连续拉压刚度模拟以及收藏箱弹性变形补偿等多个问题,成功获得了太阳翼重要部件的瞬态剪力、弯矩等载荷结果,为产品设计提供了重要决策依据。结果也表明基于线性模型的计算方法应用于此问题存在显著不足。

Abstract

The space station solar array is usually flexible cable/membrane structure with large developement area and plenty of mechanism links. It is necessary to establish a fine finite element model, and analyze the transient deformation and stress under high strength on-orbit load conditions. By using the mechanical properties of the Gap element, the inverted Gap elements is used as the connecting unit between the flexible substrate and the storage boxe. Several problems such as pretigthening force on flexible substrate, simulation of discontinuous tension and compression stiffness of the cable, elastic deformation offset of the storage boxe are solved in one stroke. The results of transient shear force and bending moment of improtant companents of solar array are obtained successfully, which provides important decision basis for product design. The results also show that there are significant shortcomings in the application of linear model to this promlem.
 

关键词

柔性太阳翼 / 在轨载荷 / 非线性瞬态响应

Key words

flexible solar srrsy
/ on-orbit load / nonlinear transient response

引用本文

导出引用
臧旭1,2,吴松2,唐国安1,郭其威2. 基于非线性瞬态响应的空间站柔性太阳翼在轨载荷分析[J]. 振动与冲击, 2020, 39(14): 22-28
ZANG Xu1,2,WU Song2,TANG Guoan1,GUO Qiwei2. Nonlinear transient on-orbit load analysis of a flexible solar array[J]. Journal of Vibration and Shock, 2020, 39(14): 22-28

参考文献

[1] Jones P L, Spence B R. Spacecraft solar array technology trends[J]. Aerospace and Electronic Systems, 2011, 26(8): 17-28.
[2] 王娜, 黄峥, 马季军, 等. 我国交会对接任务中航天器电源设计与应用[J]. 载人航天, 2013, 19(3):52~58.
Wang Na, Huang Zheng, Ma Ji-jun, et al. Spacecraft Power System Design and Application for the Rendezvous and Docking Tasks[J]. Manned Spaceflight, 2013, 19(3):52~58.
[3] S. Wang, R. Zhao. Constant-force Cylinder Experiment with Low-gravity Simulation[J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2015, 87 (1):376~379.
[4] Sleight D W, Michii Y, Lichodiziejewski D, et al. Structural Analysis and test Comparison of a 20 Meter Inflation Deployed Solar Sail[C].//47th AIAA/ASME/ASCE/AHS/ASC. Structural Dynamics and Materials Conference. Newport, Rhode Island: AIAA, 2006.
[5] 郭其威, 张关艳, 唐国安. 太阳能电池阵地面模态试验的重力影响及其校正方案[J]. 振动与冲击, 2008, 27(12): 44-46.
Guo Qi-wei, ZHANG Mei-yan, TANG Guo-an, et al. Effects of gravity on ground experimental modal analysis of solar panel and its correction methodology [J]. Journal of Vibration and Shock, 2008, 27(12): 44-46.
[6] 康雄建, 陈务军, 邱振宇, 等. 空间薄壁CFRP豆荚杆模态试验及分析[J]. 振动与冲击, 2017, 36(15):215~221.
Kang Xiong-jian, Chen Wu-jun, Qiu zhen-yu, et al. Modal Tests and Analysis for Space Thin-walled CFRP lenticular booms [J]. Journal of Vibration and Shock, 2017, 36(15):215~221.
[7] Smith S, Mei K. Analytical models for nonlinear responses of a laboratory solar array[C]. The38th Structures, Structural Dynamics, and Materials Conference, Kissimmee, USA, 1997.
[8] Granda J, Nguyen L, Alternative Techniques for Developing Dynamic Analysis Computer Models of The International Space Station, Space Shuttle and Orbiter Repair Maneuvers[C]. Proceedings of the AIAA Structural Dynamics and Material Conference. Rode Island, May 2006.
[9] Granda J, Nguyen L, Raval M. Simplified dynamic model generation and vibration analysis of the international space station mission 12A[C]. Conference and Exhibi of AIAA Infotech at Aerospace. Rohnert Park, USA, 2007.
[10] Laible M, Fitzpatrick K, Grygier M. International Space Station 2A array modal analysis[C]. The 31st IMAC, A Conference on Structural Dynamics, Topics in Nonlinear Dynamics,Garden Grove, USA, 2013.
[11] MSC Nastran 2017.1 Quick Reference Guide[M]. Msc Software. 2017. 3279~3281.
[12] 郭其威, 吴松, 刘芳. 空间站太阳电池翼伸展机构屈曲载荷分析与试验研究[J]. 载人航天, 2015, 21(4):341~345.
Guo Qi-wei, Wu Song, Liu Fang. Research on Buckling Load Analysis and Test of Solar Array Deployable Mechanism in Space Station[J]. Manned Spaceflight, 2015, 21(4):341~345.
[13] 时军委, 徐峰, 胡雪平, 等. 对接机构动力学仿真[J]. 上海航天, 2011, 28(6):17~21.
Shi Jun-wei, Xu feng, Hu Xue-ping, et al. Docking Mechanism Dynamic Simulation[J]. Aerospace Shanghai, 2011, 28(6):17~21.
[14] 刘芳, 郭其威, 吴松, 等. 空间站柔性电池翼在轨载荷计算及分析[J]. 动力学与控制学报, 2019, 12(3): 230~234.
Liu Fang, Wu Song, Guo Qi-wei, et al. On-orbit Load Computation and Analysis of Flexible Solar array for China Space Station[J]. Journal of Dynamics and Control, 2019, 12(3): 230~234.

PDF(1906 KB)

1000

Accesses

0

Citation

Detail

段落导航
相关文章

/