转子/密封系统失稳振动抑制的动力吸振方法研究

许琦1,牛俊开1,姚红良2,赵立超3,闻邦椿2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 242-250.

PDF(2216 KB)
PDF(2216 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 242-250.
论文

转子/密封系统失稳振动抑制的动力吸振方法研究

  • 许琦1,牛俊开1,姚红良2,赵立超3,闻邦椿2
作者信息 +

Dynamic vibration absorber based instability vibration suppression of a rotor/seal system

  • XU Qi1, NIU Junkai1, YAO Hongliang2, ZHAO Lichao3, WEN Bangchun2
Author information +
文章历史 +

摘要

针对密封中流体引起转子/密封系统振动失稳的问题。提出采用动力吸振器(DVA)实现转子/密封系统失稳振动抑制。建立转子/密封-DVA系统非线性微分方程,采用数值方法求解并获得附加DVA前后转子/密封系统的非线性特性;根据Hurwitz判据获得系统的临界稳定条件;通过遗传算法优化DVA参数,获得附加优化DVA前后转子/密封系统稳定性。结果表明:附加DVA能够改变转子/密封系统失稳振动频率和失稳阈值;在一定的转速范围内失稳振动被完全抑制;在不完全抑制的转速范围内,附加DVA能降低失稳振动的振幅。

Abstract

The dynamic vibration absorber (DVA) was proposed to suppress the instability vibration of a rotor/seal system.A model for the rotor/seal system with DVA was established.A numerical method was utilized to obtain the nonlinear characteristics of the rotor/seal system without and with DVA.The critical stability condition was obtained by the Routh-Hurwitz criterion.Then the genetic algorithm was applied to optimize the DVA parameters, and the stability was discussed.The results show that the DVA is effective to change the instability vibration frequency and threshold of the rotor/seal system.The instability vibration can be completely suppressed within a certain range of rotating speed.The DVA can reduce the amplitude of the instability vibration in some range of rotating speed, at which the instability vibration is partially suppressed.

关键词

转子动力学 / 动力吸振器(DVA) / 振动抑制 / 失稳阈值

Key words

rotor dynamics / dynamic vibration absorber(DVA) / vibration suppression / instability threshold

引用本文

导出引用
许琦1,牛俊开1,姚红良2,赵立超3,闻邦椿2. 转子/密封系统失稳振动抑制的动力吸振方法研究[J]. 振动与冲击, 2020, 39(14): 242-250
XU Qi1, NIU Junkai1, YAO Hongliang2, ZHAO Lichao3, WEN Bangchun2. Dynamic vibration absorber based instability vibration suppression of a rotor/seal system[J]. Journal of Vibration and Shock, 2020, 39(14): 242-250

参考文献

[1] 王学军,葛丽玲,谭佳健. 我国离心压缩机的发展历程及未来技术发展方向[J]. 风机技术, 2015, (3): 65-77.
Wang Xue-jun, Ge Li-ling, Tan Jia-jian. The Development Process of Centrifugal Compressor and the Future Technology Development Trend in China[J]. Compressor Blower & Fan Technology, 2015, (3): 65-77.
[2] 闻邦椿,李以农,徐培民,等. 工程非线性振动[M]. 北京:科学出版社,2007.
Wen Bang-chun, Li Yi-nong, Xu Pei-min, et al. Engineering Nonlinear Vibration[M]. Beijing: Science press, 2007.
[3] 曹树谦,陈予恕. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(S2): 68-79.
Cao Shu-qian, Chen Yu-shu. A review of modern rotor/seal dynamics[J]. Engineering Mechanics, 2009, 26(S2): 68-79.
[4] 赵倩,许琦,姚红良,等. 多跨转子系统流体引发自激振动稳定性分析[J]. 振动与冲击, 2016, 35(5): 196-200.
Zhao Qian, Xu Qi, Yao Hong-liang, et al. Stability of a multi-span rotor system with fluid-induced self-excited vibration[J]. Journal of Vibration and Shock, 2016, 35(5): 196-200.
[5] Muszynska A, Bently D E. Anti-swirl arrangements prevent rotor/seal instability[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989, 111(2): 156-162.
[6] Le D, Tsuei C, Pan M. Optimally controlled anti-swirl injection to eliminate whirl in fluid-film bearings of rotary machinery[J]. International Journal of Mechanical Sciences, 2015, 98: 157-168.
[7] 孙丹,王双,艾延廷,等. 反旋流对密封静力与动力特性影响的理论与试验研究[J]. 机械工程学报, 2016, 52(3): 101-109.
Sun Dan, Wang Shuang, Ai Yan-ting, et al. Theoretical and experimental research on the performance of anti-swirl flow for the static and dynamic characteristics of seals[J]. Journal of Mechanical Engineering, 2016, 52(3): 101-109.
[8] Childs D, Elrod D, Hale K. Annular honeycomb seals: Test results for leakage and rotordynamic coefficients; comparisons to labyrinth and smooth configurations[J]. Journal of Tribology, 1989, 111(2): 293-301.
[9] Ertas B H, Delgado A, Vannini G. Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2012, 134(4): 042503.
[10] 孙丹,李胜远,肖忠会,等. 锥形间隙孔型阻尼密封动力特性分析及抑振机理[J]. 航空动力学报, 2018, 33(7): 1544-1552.
Sun Dan, Li Sheng-yuan, Xiao Zhong-hui, et al. Rotordynamic characteristics analysis and suppression vibration mechanism of taper clearance hold-pattern damper seal[J]. Journal of Aerospace Power, 2018, 33(7): 1544-1552.
[11] 郎骥,杨建刚,曹浩. 可倾/固定密封内流体激振力计算与试验比较[J]. 机械工程学报, 2013, 49(3): 101-105.
Lang Ji, Yang Jian-gang, Cao Hao. Calculation and experimental comparison of fluid induced force between the titling pad seal and the fixed pad seal[J]. Journal of Mechanical Engineering, 2013, 49(3): 101-105.
[12] Queiroz M D. An active hydrodynamic bearing for controlling self-excited vibrations: theory and simulation[J]. Journal of Vibration and Control, 2012, 19(14): 2211-2222.
[13] Riemann B, Perini E A, Cavalca K L, et al. Oil whip instability control using μ-synthesis technique on a magnetic actuator[J]. Journal of Sound and Vibration, 2013, 332(4): 654-673.
[14] 冯浩然,何立东,夏雪然,等. 四跨转子应用调谐质量吸振器抑制临界转速振动实验研究[J]. 北京化工大学学报(自然科学版), 2017, 44(4): 76-81.
Feng Hao-ran, He Li-dong, Xia Xue-ran, et al. Experimental study of the critical speed vibration control for four-span rotors with tuned mass absorbers[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(4): 76-81.
[15] Hu H, He L. Online control of critical speed vibrations of a single-span rotor by a rotor dynamic vibration absorber at different installation positions[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2075-2081.
[16] 姚红良,王重阳,陈子冬,等. 转子系统永磁变刚度抑振及吸振研究[J]. 机械工程学报, 2017, 53(9): 66-72.
YAO Hong-liang, WANG Chong-yang, CHEN Zi-dong, et al. Vibration suppression and absorption using permanent magnet stiffness varying mechanism[J]. Journal of Mechanical Engineering, 2017, 53(9): 66-72.
[17] Yao H, Zheng D, Wen B. Magnetic Nonlinear Energy Sink for Vibration Attenuation of Unbalanced Rotor System[J]. Shock and Vibration, 2017, 2017: 4132607.
[18] Bab S, Khadem S E, Shahgholi M, et al. Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks[J]. Mechanical Systems and Signal Processing, 2017, 84: 128-157.
[19] Tehrani G G, Dardel M. Mitigation of nonlinear oscillations of a Jeffcott rotor System with an optimized damper and nonlinear energy sink[J]. International Journal of Non-Linear Mechanics, 2018, 98: 122-136.
[20] Shi C, Shaw S W, Parker R G. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers[J]. Journal of Sound and Vibration, 2016, 385: 55-68.
[21] Nishimura K, Ikeda T, Harata Y. Localization phenomena in torsional rotating shaft systems with multiple centrifugal pendulum vibration absorbers[J]. Nonlinear Dynamics, 2016, 83(3): 1705-1726.
[22] Muszynska A. Rotordynamics[M]. Boca Raton, USA: CRC Press, Taylor & Francis Group, 2005.
[23] Cheng M, Meng G, Jing J. Numerical and experimental study of a rotor–bearing–seal system[J]. Mechanism and Machine Theory, 2007, 42(8): 1043-1057.
[24] 王晨阳,何立东. 转子动力吸振器在线抑制多跨转子过临界振动的实验研究[J]. 中国电机工程学报, 2015, 35(18): 4715-4724.
Wang Chen-yang, He Li-dong. Experimental study on over-critical speed vibration online control of multi-span rotors by rotor dynamic vibration absorber[J]. Proceedings of the CSEE, 2015, 35(18): 4715-4724.
[25] Fan C, Pan M. Active elimination of oil and dry whips in a rotating machine with an electromagnetic actuator[J]. International Journal of Mechanical Sciences, 2011, 53(2): 126-134.
[26] 许琦,姚红良,刘子良,等. 双碰摩故障转子系统碰摩位置定量诊断方法[J]. 振动与冲击, 2014, 33(12): 24-27.
Xu Qi,Yao Hong-liang,Liu Zi-liang,et al. Quantitative diagnosis method for double rubbing fault locations in a rotor system[J]. Journal of Vibration and Shock, 2014, 33(12): 24-27.

PDF(2216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/