分数阶单自由度间隙振子的受迫振动

牛江川1,2,赵志爽2,邢海军1,2,申永军1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 251-256.

PDF(998 KB)
PDF(998 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 251-256.
论文

分数阶单自由度间隙振子的受迫振动

  • 牛江川1,2,赵志爽2,邢海军1,2,申永军1,2
作者信息 +

Forced vibration of a fractional-order single degree-of-freedom oscillator with clearance

  • NIU Jiangchuan1,2, ZHAO Zhishuang2, XING Haijun1,2, SHEN Yongjun1,2
Author information +
文章历史 +

摘要

研究了含有分数阶微分项的单自由度间隙振子的受迫振动,利用KBM渐近法获得了系统的近似解析解。分析了分段线性系统的主共振,得到了分数阶阶次在0~ 2时分数阶项的统一表达式;发现分数阶微分项在分段系统中以等效线性阻尼和等效线性刚度的形式影响着系统的动力学特性,而间隙以等效非线性刚度的形式影响着系统的动力学特性。获得了主共振幅频响应的表达式,并得到了系统的稳定性条件;比较了系统主共振幅频响应的近似解析解和数值解,发现两者符合程度较高,验证了近似解析解的正确性;详细分析了分数阶项和间隙对系统主共振幅频响应的影响。研究表明KBM渐近法是分析分数阶分段光滑系统动力学的有效方法。

Abstract

The forced vibration of a single degree-of-freedom piecewise linear oscillator with a clearance and a fractional-order derivative term was investigated.The approximate analytical solution for its primary resonance was obtained by the Krylov-Bogoliubov-Mitropoisky (KBM) asymptotic method.The primary resonance of the piecewise linear system was analyzed, and a unified expression of the fractional-order differential term was obtained, where the fractional order was restricted in 0 to 2.The effects of the fractional-order differential term on the dynamic characteristics of the piecewise system were expressed as an equivalent linear damping and an equivalent linear stiffness, while that of the clearance was an equivalent nonlinear stiffness.The expression of the amplitude-frequency response of the primary resonance was obtained, and the stability condition of the system was also achieved.The approximate analytical solutions and numerical solutions of the primary resonance amplitude-frequency responses were compared, which shows both are in good agreement.The effects of the fractional-order term and clearance on the amplitude-frequency response of the primary resonance were analyzed in detail.It concludes that the KBM asymptotic method is an effective method to analyze the dynamics of fractional-order piecewise smooth systems.

关键词

分数阶微分 / 近似解析解 / KBM渐近法 / 主共振

Key words

fractional-order derivative / approximate analytical solution / Krylov-Bogoliubov-Mitropoisky (KBM) asymptotic method / primary resonance

引用本文

导出引用
牛江川1,2,赵志爽2,邢海军1,2,申永军1,2. 分数阶单自由度间隙振子的受迫振动[J]. 振动与冲击, 2020, 39(14): 251-256
NIU Jiangchuan1,2, ZHAO Zhishuang2, XING Haijun1,2, SHEN Yongjun1,2. Forced vibration of a fractional-order single degree-of-freedom oscillator with clearance[J]. Journal of Vibration and Shock, 2020, 39(14): 251-256

参考文献

[1] 陈思雨, 唐进元.间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J].机械工程学报, 2009, 45(8): 119-124.
CHEN Siyu, TANG Jinyuan.Effect of backlash on dynamics of spur gear system with friction and time-varying stiffness[J]. Chinese of Journal of Mechanical Engineering, 2009, 45(8): 119-124.
[2] 刘丽兰, 刘宏昭, 吴子英, 等.考虑摩擦和间隙影响的机床进给伺服系统建模与分析[J].农业机械学报, 2010, 41(11):212-218.
LIU Lilan, LIU Hongzhao, WU Ziying, et al.Modeling and analysis of machine tool feed servo systems with friction and backlash[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 212-218.
[3] 王国庆, 刘宏昭, 何长安.含间隙连杆机构非线性行为研究[J].机械设计,2005,22(3): 12-13.
WANG Guoqing, LIU Hongzhao, HE Changan. Nonlinear behavior of the linkage mechanism with clearance[J]. Mechanical Design, 2005, 22(3): 12-13.
[3] 于涛. 多运动副间隙对机构动力学的影响[D]. 郑州:郑州大学,2017.
YU Tao. Effects of multiple joint clearances on dynamic characteristics of Mechansisms [D]. Zhenzhou: Zhenzhou University, 2017.
[4] 张严, 陈大伟, 喻浩文. 考虑间隙特性的起落架摆振非线性分岔分析[J]. 航空计算技术, 2018,48(1):53-57.
ZHANG Yan,CHEN Dawei,YU Haowen. Nonlinear bifurcation analysis of landing gear shimmy considering freeplay[J]. Aeronautical Computing Technique,2018, 48(1): 53-57.
[5] 阎绍泽,向吴维凯,黄铁球.计及间隙的运动副和机械系统动力学的研究进展[J].北京大学学报(自然科学版), 2016,52(4): 741-755.
YAN Shaoze,XIANG Wuweikai,HUANG Tieqiu.Advances in Modeling of Clearance Joints and Dynamics of Mechanical Systems with Clearances[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(4): 741-755.
 [6] 胡海岩. 高维非光滑动力系统的周期响应数值分析[J].固体力学学报, 1994, 15(2): 135-143.
HU Haiyan. Numerical analysis of periodic response of high-dimensional nonsmooth dynamic systems[J]. Journal of solid mechanics, 1994, 15(2): 135-143.
[6] 吴志强,雷娜. 分段线性系统的振动性能分析[J]. 振动与冲击,2015,34(18):94-99
WU Zhiqiang,LEI Na.Analysis of vibration performance of
piecewise linear system [J].Journal of Vibration and Shock,2015, 34( 18): 94-99.
[7] 丁旺才, 张有强, 谢建华. 含对称间隙的摩擦振子非线性动力学分析[J]. 摩擦学学报, 2008, 28(2): 155-160.
DING Wangcai, ZHANG Youqiang, XIE Jianhua. Analysis of nonlinear dynamics of dry friction oscillators with symmetric clearance[J]. Tribology, 2008, 28(2): 155-160.
[8] 张晨旭, 杨晓东, 张伟. 含间隙齿轮传动系统的非线性动力学特性的研究[J]. 动力学与控制学报, 2016, 14(2): 115-121.
ZHANG Chenxu, YANG Xiaodong, ZHANG Wei. Study on Non-linear dynamics of gear transmission system with clearance[J]. Journal of dynamics and control, 2016, 14(2): 115-121.
[9] 宦颂梅. 分段光滑动力系统理论及应用[D]. 武汉: 华中科技大学, 2012.
HUAN Songmei. Theory and applications of piecewise smooth dynamical systems[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[10] JI J C, HANSEN C H. On the approximate solution of a piecewise nonlinear oscillator under super-harmonic resonance[J]. Journal of Sound and Vibration, 2005, 283: 467-474.
[11] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
[12] PETRAS I. Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation[M]. Beijing: Higher Education Press, 2011.
[13] MACHADO J A T, KIRYAKOVA V, MAINARDI F. Recent history of fractional calculus[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16: 1140-1153.
[14] ROSSIKHIN Y A, SHITIKOVA M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results[J]. Applied Mechanics Reviews, 2010, 63: 010801-1-52.
 [15] ADOLFSSON K, ENELUND M, OLSSON P. On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials, 2005, 9(1):15-34.
[15] FUKUNAGA M, SHIMIZU N. Fractional derivative constitutive models for finite deformation of viscoelastic materials[J]. Journal of Computational and Nolinear dynamics, 2015, 10(6): 061002.
[16] 李媛萍, 张卫, 欧阳东. 具有分数导数本构关系的粘弹性浅拱的非线性动力学行为[J]. 振动工程学报, 2012, 25(3): 342-350.
LI Yuanping, ZHANG Wei, OUYANG Dong. Nonlinear dynamic behaviors ofviscoelastic shallow arch with fractional derivative constitutive relationship[J]. Journal of Vibration Engineering, 2012, 25(3): 342-350.
 [17] PODLUBNY I. Fractional-order systems and PIλDμ controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1):208-214.
[17] TABASI M, BALOCHIAN S. Synchronization of the chaotic fractional-order genesio–tesi systems using the adaptive sliding mode fractional-order controller [J]. Journal of Control, Automation and Electrical Systems, 2018, 29(1):15-21.
[18] DADRAS S, Momeni H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(1):367-377.
[19] 牛江川, 申永军, 杨绍普, 等.基于速度反馈分数阶 PID 控制的达芬振子的主共振[J].力学学报, 2016, 48(02): 422-429.
NIU Jiangchuan, SHEN Yongjun, YANG Shaopu, et al. Primary resonance of duffing oscillator with fractional-order PID controller based on velocity feedback[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(02): 422-429.
 [20] 薛定宇, 赵春娜. 分数阶系统的分数阶 PID 控制器设计[J]. 控制理论与应用, 2007, 24(5): 771-775.
XUE Dingyu, ZHAO Chunna. Fractional order PID controller design for fractional order system[J]. Control Theory & Applications, 2007, 24(5): 771-775.
[20] 胡海涛. 自适应分数阶PID交流伺服控制系统研究[D]. 西安: 西安工业大学, 2018.
HU Haitao. Research on adaptive fractional-order PID AC servo control system [D]. Xi’an: Xi’an University of Technology, 2018.
[21] JIA J H, SHEN X Y, HUA H X. Viscoelastic behavior analysis and application of the fractional derivative Maxwell model[J]. Journal of Vibration and Control, 2007, 13(13): 385-401.
[22] SHOKOOH A, SUAREZ L. A comparison of numerical methods applied to a fractional model of damping materials[J]. Journal of Vibration and Control, 1999,5(3): 331-354.
[23] DROZDOV A D. Fractional differential models in finite viscoelasticity[J]. Acta Mechanica,1997,124(1-4):155-180.
[24] SHEN Y J, WEI P, YANG S P. Primary resonance of fractional-order Van der Pol oscillator[J]. Nonlinear Dynamics, 2014, 77(4):1629-1642.
[25] SHEN Y J, NIU J C, YANG S P, et al. Primary resonance of dry-friction oscillator with fractional-order Proportional- Integral-Derivative controller of velocity feedback[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051027.
[26] YANG T Z. Stability in parametric resonance of an axially moving beam constituted by fractional order material[J]. Archive of Applied Mechanics, 2012, 82(12): 1763-1770.
[27] 杨建华, 朱华. 不同周期信号激励下分数阶线性系统的响应特性分析[J]. 物理学报, 2013, 62(2): 024501.
YANG Jianhua, ZHU Hua. The response property of one kind of factional-order linear system excited by different periodical signals[J]. Acta Physica Sinica, 2013, 62(2): 024501.
[28] XU Y, LI Y G, Liu D. A method to stochastic dynamical systems with strong nonlinearity and fractional damping[J]. Nonlinear Dynamics, 2016, 83(4): 2311-2321.
[29] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012, 61(11): 110505.
SHEN Yongjun, YANG Shaopu, XING Haijun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J]. Acta Physica Sinica, 2012, 61(11): 110505
[30] 杨帅. 非线性共振筛的动力学分析[D]. 天津: 天津大学, 2007.
YANG Shuai. Dynamics analysis of nonlinear resonance screen [D]. Tianjin: Tianjin University, 2007.
[31]刘振皓, 巫世晶, 王晓笋, 等. 基于增量谐波平衡法的复合行星齿轮传动系统非线性动力学[J]. 振动与冲击, 2012, 31(3): 117-122.
LIU Zhenhao, WU Shijing, WANG Xiaosun, et al. Nonlinear dynamics of composite planetary gear transmission system based on incremental harmonic balance method [J]. Journal of Vibration and Shock, 2012, 31(3): 117-122.

PDF(998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/