干气密封动静环摩擦界面热弹法向接触刚度分形模型

陈金林1,丁雪兴1,张伟政1,严如奇2,孙宝财1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 257-263.

PDF(1385 KB)
PDF(1385 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 257-263.
论文

干气密封动静环摩擦界面热弹法向接触刚度分形模型

  • 陈金林1,丁雪兴1,张伟政1,严如奇2,孙宝财1,2
作者信息 +

Fractal prediction model for the thermo-elastic normal contact stiffness of frictional interfaces in dry gas seals

  • CHEN Jinlin1, DING Xuexing1, ZHANG Weizheng1, YAN Ruqi2, SUN Baocai1,2 
Author information +
文章历史 +

摘要

基于分形理论,根据重新建立的微凸体接触模型,并考虑微凸体弹性变形以及热应力变形,建立了干气密封两摩擦界面热弹性法向接触刚度计算模型,并对其影响因素进行了数值分析。研究结果表明:热法向接触刚度、弹性法向接触刚度均随无量纲真实接触面积、分形维数增大而增大,而随特征尺寸增大而减小,其中分形维数、特征尺寸对弹性法向接触刚度影响较为显著;摩擦因数对热法向接触刚度和弹性法向接触刚度的影响相反,摩擦因数增大,热法向接触刚度变大,而弹性法向接触刚度变小;热法向接触刚度随着转速以线性方式增大。摩擦界面热弹法向接触刚度分形模型的建立与分析,将为研究考虑热效应的干气密封摩擦振动奠定一定基础。

Abstract

Based on the fractal theory and a re-established contact model of micro-convex bodies, and considering the elastic deformation and thermal stress deformation of micro-convex bodies, a calculation model for the thermal-elastic normal contact stiffness on two-frictional interfaces of a dry gas seal was established.Meanwhile, a numerical analysis on the key factors influencing the normal contact stiffness was conducted.The results indicate that the fractal dimension and characteristic dimension have significant impact on the thermal and elastic normal contact stiffnesses.Generally, both the thermal and elastic normal contact stiffnesses increase with the rise of the dimensionless real contact area and fractal dimension.At the same time, they both decrease as the characteristic dimension is raised.With the increase of friction coefficient, the thermal normal contact stiffness increases, while the elastic normal contact stiffness decreases.Additionally, the thermal normal contact stiffness is found to have a linear increase with the rotational speed.The establishment and analysis of the fractal model for the thermal-elastic normal contact stiffness on frictional interfaces provide guidelines for the further investigation on the friction vibration of dry gas seals under thermal effect.

关键词

干气密封 / 摩擦界面 / 分形 / 热应力 / 法向接触刚度 / 数值分析

Key words

dry gas seal / frictional interface / fractals / thermal stress / normal contact stiffness / numerical analysis

引用本文

导出引用
陈金林1,丁雪兴1,张伟政1,严如奇2,孙宝财1,2. 干气密封动静环摩擦界面热弹法向接触刚度分形模型[J]. 振动与冲击, 2020, 39(14): 257-263
CHEN Jinlin1, DING Xuexing1, ZHANG Weizheng1, YAN Ruqi2, SUN Baocai1,2 . Fractal prediction model for the thermo-elastic normal contact stiffness of frictional interfaces in dry gas seals[J]. Journal of Vibration and Shock, 2020, 39(14): 257-263

参考文献

[1] Etsion I, Kligerman Y. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions,1999,42(3):511–516.
[2]  Faria MTC. An efficient finite element procedure for analysis of high-speed spiral groove gas face seals[J]. Journal of Tribology, 2001,123(1):205–210.
[3]  Lai T, Gabriel R, Mayer-Yep L. Improved performance seals for pipeline applications. Lubrication Engineering[J], 2003;59(4):18–29.
[4] 彭旭东, 刘坤, 白少先, 等. 典型螺旋槽端面干式气体密封动压开启性能[J]. 化工学报, 2013, 64(1): 328-333.
    Peng XD, Liu K, Bai SX, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves [J]. CIESC Journal, 2013, 64(1): 328-333. (in Chinese)
[5] 丁雪兴,王平西,张伟政,等. 螺旋槽干气密封环端面摩擦试验及其性能分析[J]. 化工学报, 2017, 68(1): 208-214.
    Ding XX, Wang PX, Zhang WZ, et al. Analysis of tribological test and performance under rings end faces of spiral groove dry gas seal [J]. CIESC Journal, 2017, 68(1): 208-214. (in Chinese)
[6]  葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5): 405-408.
    Ge SR, Zhu H. Complicate tribological systems and quantitative study methods of their problems[J].       Tribology,2002,22(5) : 405-408. (in Chinese)
[7]  Liu Z ,Shi J, Wang F, Normal contact stiffness of the elliptic area between two asperities[J].Acta Mechanica Solida Sinica, 2015 , 28 (1) :33-39
[8]  Xiao HF, Shao YM, Brennan MJ. On the contact stiffness and nonlinear vibration of an elastic body with a rough surface in contact with a rigid flat surface [J]. European Journal of Mechanics - A/Solids,2015,49(1):321-328.
[9]  刘意, 刘恒, 易均, 等. 计及塑性接触层的法向接触刚度等效方法 [J]. 振动与冲击, 2013,32(7): 43-47.
    Liu Y, Liu H, YI J, et al. Equivalent method for normal contact stiffness considering plastic contact layer[J]. Journal of Vibration and Shock, 2013,32(7): 43-47. (in Chinese)
[10] Hattori G, Serpa AL. Contact stiffness estimation in ANSYS using simplified models and artificial neural networks[J]. Finite Elements in Analysis and Design,2015,97(1):43-53.
[11] Benedetti I,Aliabadi MH .A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials[J]. Computer Methods in Applied Mechanics & Engineering , 2013 , 265 (9) :36-62.
[12] Gun H, Gao XW, Analysis of frictional contact problems for functionally graded materials using BEM [J]. Engineering Analysis with Boundary Elements,2014,38(1):1–7.
[13] Rodríguez-Tembleque L , Buroni FC, Abascal R,et al. Analysis of FRP composites under frictional contact conditions[J]. International Journal of Solids & Structures, 2013 , 50 (24) :3947-3959
[14] 庄艳, 李宝童, 洪军, 等. 一种结合面法向接触刚度计算模型的构建[J]. 上海交通大学学报, 2013, 47(2): 180-186.
Zhuang Y, Li BT, Hong J, et al. A normal contact stiffness model of the interface[J]. Journal of Shanghai Jao Tong University, 2013, 47(2): 180-186. (in Chinese)
[15] 傅卫平, 娄雷亭, 高志强, 等. 机械结合面法向接触刚度和阻尼的理论模型[J]. 机械工程学报, 2017, 53(9): 73-82. (in Chinese)
Fu W P, Lou L T, Gao Z Q, et al. Theoretical Model for the Contact Stiffness and Damping of Mechanical Joint Surface[J]. Journal of Mechanical Engineering, 2017, 53(9): 73-82.
[16] Buczkowski R,Kleiber M. Statistical Models of Rough Surfaces for Finite Element 3D-Contact Analysis [J]. Archives of Computational Methods in Engineering, 2009, 16(4): 399-424.
[17] Pan WJ, Li XP, Wang LL,A normal contact stiffness fractal prediction model of dry-friction rough surface and experimental verification[J]. European Journal of Mechanics A/Solids, 2017,66(6):94-102.
[18] Liu JL, Ma C, Wang SL, et al.Contact stiffness of spindle-tool holder based on fractal theory and multi-scale contact mechanics model[J]. Mechanical Systems and Signal Processing,2019,119(9):363–379.
[19] Chen Q,Xu F,Liu P,et al.Research on fractal model of normal contact stiffness between two spheroidal joint surfaces considering friction factor[J]. Tribology International,2016,97(1):253–264.
[20] Wang RQ, Zhu LD, Zhu CX,et al.Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction[J]. International Journal of Mechanical Sciences ,2017,134(10) :357–369.
[21] Liu P,Zhao H,Huang K,et al.Research on normal contact stiffness of rough surface consideringfriction based on fractal theory[J]. Applied Surface Science 2015,349(4):43–48.
[22] 温淑花, 张学良, 武美先, 等. 结合面法向接触刚度分形模型建立与仿真 [J]. 农业机械学报, 2009, 40(11): 197-202.
Wen SH, Zhang XL,Wu MX, et al. Fractal model and simulation of normal contact stiffness of joint interfaces and its simulation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 197-202.
[23] 尤晋闽, 陈天宁. 基于分形接触理论的结合面法向接触参数预估[J]. 上海交通大学学报, 2011, 45(9): 1275-1280.
YOU JM, CHENG TN. Estimation for Normal Parameters of Joint Surfaces Based on Fractal Theory [J]. Journal of Shanghai Jao Tong University, 2011, 45(9): 1275-1280.
[24] 李小彭, 郭浩, 刘井年, 等. 考虑摩擦的结合面法向刚度分形模型及仿真[J]. 振动测试与诊断, 2013, 33(2): 210-213+336.
Li XP, Guo H, Liu JN, et al. Fractal model and simulation of normal contact stif fness considering the friction between joint surfaces [J]. Journal of Vibration,Measurement & Diagnosis, 2013, 33(2): 210-213+336.
[25] 姬翠翠,朱华.粗糙表面分形接触模型的研究进展[J].润滑与密封,2011 , 36 (9) :114-119.
Ji CC,Zhu H.Research progress on M-B fractal contact model[J].Lubrication Engineering,2011 , 36 (9) :114-119. (in Chinese)
[26] Majumdar A,Bhushan B. Fractal model of elastic-plastic contact between rough surfaces [J]. ASME, Journal of Tribology, 1991, 113:1-11.
[27] Wang S, Komvopoulos K. Fractal theory of the interfacial temperature distribution in the slow sliding regime: Part II - Multiple domains, elastoplastic contacts and applications [J]. Journal of Tribology, 1994, 116(4): 824-32.
[28] 丁雪兴, 严如奇, 贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析[J]. 摩擦学学报, 2014, 34(4): 341-347.
    Ding XX, Yan RQ, Jia YL. Construction and analysis of fractal contact mechanics model [J]. Tribology, 2014, 34(4): 341-347.
[29] Berry MV, Lewis ZV, On the Weierstrass-Mandelbrot fractal function, Proceedings of the Royal Society of             London [J]. 1980 , 370 (1743) :459-484.
[30] Johnson K L.Contact mechanics [M].Cammbridge University Press,1985:104-109
[31] Wang S, Komvopoulos K. Fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I - Elastic contact and heat transfer analysis [J]. Journal of Tribology,1994,116(4):812-823.

PDF(1385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/