磷石膏的动力学特性试验研究

路停1,2,魏作安1,2,王文松1,2,杨永浩1,2,曹冠森1,2,庄孙宁1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 264-271.

PDF(1563 KB)
PDF(1563 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 264-271.
论文

磷石膏的动力学特性试验研究

  • 路停1,2,魏作安1,2,王文松1,2,杨永浩1,2,曹冠森1,2,庄孙宁1,2
作者信息 +

Experimental study on the dynamic characteristics of phosphogypsum

  • LU Ting1, 2, WEI Zuoan1, 2, WANG Wensong1, 2, YANG Yonghao1, 2, CAO Guansen1,2, ZHUANG Sunning1, 2
Author information +
文章历史 +

摘要

利用带有弯曲元模块的GDS振动三轴试验仪,对磷石膏的动力学特性进行了系统研究。获得了磷石膏的动强度、动剪切模量 G d、阻尼比 λ和动孔隙水压力μ d等动力参数及其变化规律。结果表明:磷石膏的动强度曲线呈幂函数形式,不同围压下的动强度曲线归一性较差;初始动剪切模量 G d0与有效固结围压 σ ′0呈幂函数关系;采用Davidenkov模型对动剪切模量比 G d/ G d0进行拟合,不同围压下磷石膏的动剪切模量比归一性较好;随着干密度及围压的增加,磷石膏的孔压发展曲线由 “双S”型向 “单S”型变化;以Seed孔压模型为基础,建立了磷石膏的动孔压模型。 
 

Abstract

The GDS dynamic triaxle test system with a bending element module was used to study systematically the dynamic characteristics of phosphogypsum.The dynamic parameters of phosphogypsum and their variation were investigated, such as the dynamic strength, dynamic shear modulus G d, damping ratio λ  and dynamic pore water pressure μ d.The results show that the dynamic strength curve of phosphogypsum is in the form of a power function, and it is found the normalization of the dynamic strength curves under different confining pressure is made rather poorly.The initial dynamic shear modulus G d0 is in a power function relationship with the effective consolidation confining pressure σ ′0.The Davidenkov model was used to fit the dynamic shear modulus ratio G d/ G d0, and the normalization of the dynamic shear modulus ratio of phosphogypsum under different confining pressure is found to be better.With the increase of dry density and confining pressure, the pore pressure development curve of phosphogypsum varies its form “double S” to “single S”.Based on the Seed model, a pore pressure model suitable for the development of dynamic pore pressure of phosphogypsum was established.

关键词

磷石膏 / 土动力学 / 动强度 / 动剪切模量 / 阻尼比 / 动孔隙水压力

Key words

phosphogypsum / soil dynamics / dynamic strength / dynamic shear modulus / damping ratio / dynamic pore water pressure

引用本文

导出引用
路停1,2,魏作安1,2,王文松1,2,杨永浩1,2,曹冠森1,2,庄孙宁1,2. 磷石膏的动力学特性试验研究[J]. 振动与冲击, 2020, 39(14): 264-271
LU Ting1, 2, WEI Zuoan1, 2, WANG Wensong1, 2, YANG Yonghao1, 2, CAO Guansen1,2, ZHUANG Sunning1, 2. Experimental study on the dynamic characteristics of phosphogypsum[J]. Journal of Vibration and Shock, 2020, 39(14): 264-271

参考文献

[1] 叶学东. “十二五”期间磷石膏利用现状及当前工作重点[J]. 硫酸工业, 2017, (1): 40-43.
YE Xue-dong. Phosphogypsum utilization situation during the Twelfth Five-Year plan period and current work focus [J]. Sulphuric Acid Industry, 2017, (1): 40-43.
[2] 郑磊, 陈宏坤, 王怀利, 等. 我国磷石膏综合利用现状与发展建议[J]. 磷肥与复肥, 2017, 32(3): 33-35.
ZHENG Lei, CHEN Hong-kun, WANG Huai-li, et al. Comprehensive utilization status and development suggestions of phosphogypsum in China [J]. Phosphate & Compound Fertilizer, 2017, 32(3): 33-35.
[3] Wei Zuo-an, Yin Guang-zhi, Wang J G, et al. Design, construction and management of tailings storage facilities for surface disposal in China: case studies of failures [J]. Waste Management & Research. 2012, 31(1): 106-112.
[4] Carmo F F D, Kamino L H Y, Junior R T, et al. Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context [J]. Perspectives in Ecology and Conservation. 2017, 15(3): 145-151.
[5] 魏作安, 杨永浩, 赵怀军, 等. 小打鹅尾矿库尾矿堆积坝稳定性研究[J]. 东北大学学报(自然科学版), 2016, 37(4): 589-593.
WEI Zuo-an, YANG Yong-hao, ZHAO Huai-jun, et al. Stability of tailings dam of Xiaodae tailings pond [J]. Journal of Northeastern University(Natural Science), 2016, 37(4): 589-593.
[6] 国家安全生产监督管理总局. AQ 2059−2016磷石膏库安全技术规程[S]. 北京: 煤炭工业出版社, 2016.
[7] 徐雪源, 徐玉中, 陈桂松, 等. 工业废料磷石膏的工程特性试验研究[J]. 岩石力学与工程学报, 2004, 23(12): 2096-2099.
XU Xue-yuan, XU Yu-zhong, CHEN Gui-song, et al. Testing study on engineering characteristics of phosphogypsum [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12): 2096-2099.
[8] 张超, 杨春和, 余克井, 等. 磷石膏物理力学特性初探[J]. 岩土力学, 2007, 28(3): 461-466.
ZHANG Chao, YANG Chun-he, YU Ke-jing, et al. Study on physico-mechanical characteristics of phosphogypsum [J]. Rock and Soil Mechanics, 2007, 28(3): 461-466.
[9] 米占宽, 饶徐生, 储学群, 等. 沉积磷石膏的物理力学特性试验研究[J]. 岩土工程学报, 2015, 37(3): 470-478.
MI Zhan-kuan, RAO Xu-sheng, CHU Xue-qun, et al. Physico-mechanical properties of deposition phosphogypsum [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 470-478.
[10] Rico M, Benito G, Salgueiro A R, et al. A review of the European incidents in the worldwide context [J]. Journal of Hazardous Materials. 2008, 152(2): 846-852.
[11] Ishihara K, Ueno K, Yamada S, et al. Breach of a tailings dam in the 2011 earthquake in Japan [J]. Soil Dynamics and Earthquake Engineering. 2015, 68: 3-22.
[12] 王文松, 尹光志, 魏作安, 等. 基于时程分析法的尾矿坝动力稳定性研究[J]. 中国矿业大学学报, 2018, 47(2): 271-279.
WANG Wen-song, YIN Guang-zhi, WEI Zuo-an, et al. Study of the dynamic stability of tailings dam based on time-history analysis method [J]. Journal of China University of Mining & Technology, 2018, 47(2): 271-279.
[13] 王文松, 尹光志, 魏作安, 等. 高烈度地震区细粒尾矿上游法筑坝动力反应与稳定性分析[J]. 岩石力学与工程学报, 2017, 36(5): 1201-1214.
WANG Wen-song, YIN Guang-zhi, WEI Zuo-an, et al. Analysis of the dynamic response and stability of fine grained tailings dam by upstream embankment method in high intensity earthquake area [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1201-1214.
[14] 何淼, 刘恩龙, 刘友能. 地震动荷载作用下尾矿坝动力分析[J]. 四川大学学报(工程科学版), 2016, (增刊1): 33-38.
HE Miao, LIU En-long, LIU You-neng. Dynamic analysis of one tailing dam under seismic dynamic loading [J]. Journal of Sichuan university (Engineering science edition), 2016, (S1): 33-38.
[15] Naeini M, Akhtarpour A. Numerical analysis of seismic stability of a high centerline tailings dam [J]. Soil Dynamics and Earthquake Engineering. 2018, 107: 179-194.
[16] Ferdosi B, James M, Aubertin M. Investigation of the effect of waste rock inclusions configuration on the seismic performance of a tailings impoundment [J]. Geotechnical and Geological Engineering. 2015, 33(6): 1519-1537.
[17] 中国国家标准化管理委员会. GB/T 23456-2009磷石膏[S]. 北京: 中国标准出版社, 2009.
[18] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45.
[19] Takch A E, Sadrekarimi A, Naggar H E. Cyclic resistance and liquefaction behavior of silt and sandy silt soils [J]. Soil Dynamics and Earthquake Engineering. 2016, 83: 98-109.
[20] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011.
[21] 高志兵, 高玉峰, 谭慧明. 饱和黏性土最大动剪切模量的室内和原位试验对比研究[J]. 岩土工程学报, 2010, 32(5): 731-735.
GAO Zhi-bing, GAO Yu-feng, TAN Hui-ming. Lab and in-situ tests on maximum dynamic shear modulus of saturated clay soils  [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 731-735.
[22] 尹光志, 王文松, 魏作安, 等. 小打鹅尾矿库筑坝尾矿的动力学特性试验研究[J]. 岩石力学与工程学报, 2017, 36(增1): 3121-3130.
YIN Guang-zhi, WANG Wen-song, WEI Zuo-an, et al. Experimental study on the dynamic characteristics of embankment tailings from Xiaodae tailings pond [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3121-3130.
[23] 丁祖德, 黄娟, 袁铁映, 等. 昆明泥炭质土动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2017, 38(12): 3627-3634.
DING Zu-de, HUANG Juan, YUAN Tie-ying, et al. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming [J]. Rock and Soil Mechanics, 2017, 38(12): 3627-3634.
[24] 蔡辉腾, 金星. 福州市区粉质黏土动剪切模量与阻尼比试验研究[J]. 土木工程学报, 2011, 44(增刊): 110-113.
CAI Hui-teng, JIN Xing. Testing study on dynamic shear modulus and damping ratio of silty clay in Fuzhou downtown area [J]. China civil engineering journal, 2011, 44(S): 110-113.
[25] 蔡辉腾, 危福泉, 蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. 岩土力学, 2009, 30(增刊2): 224-228.
CAI Hui-teng, WEI Fu-quan, CAI Zong-wen, et al. Study of silty clay dynamic characteristics in Chongqing downtown area [J]. Rock and Soil Mechanics, 2009, 30(S2): 224-228.
[26] 孙田, 陈国兴, 周恩全, 等. 深层海床粉质黏土动剪切模量和阻尼比试验研究[J]. 土木工程学报, 2012, 45(增刊1): 9-14.
Sun Tian, Chen Guo-xing, Zhou En-quan, et al. Experimental research on the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay [J]. China civil engineering journal, 2012, 45(S1): 9-14.
[27] 杜艳强, 杨春和, 巫尚蔚. 循环荷载下尾矿粉土的孔隙水压力特性[J]. 东北大学学报:自然科学版, 2016, 37(4): 583-588.
DU Yan-qiang, YANG Chun-he, WU Shang-wei. Pore-water pressure characteristics of tailings silt under cyclic loading [J]. Journal of Northeastern University(Natural Science), 2016, 37(4): 583-588.
[28] 张修照, 巫尚蔚, 张超, 等. 不同固结条件下尾矿动孔压演化规律[J]. 岩土力学, 2018, 39(3): 815-822.
ZHANG Xiu-zhao, WU Shang-wei, ZHANG Chao, et al. Dynamic pore-water pressure evolution of tailings under different consolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(3): 815-822.

PDF(1563 KB)

Accesses

Citation

Detail

段落导航
相关文章

/