[1] Zienkiewicz O C and Taylor R. The finite element method. 5-th ed. [M].McGraw-Hill, NY, 2000.
[2] 冯康,秦孟兆. Hamilton体系的辛计算格式[M]. 浙江科技出版社,2004.
Feng Kang,Qin Meng-zhao.Symlectric Geometric Algorithms for Hamiltonian Systems[M]. Zhejiang Science & Technology Press,2004.
[3] 钟万勰. 分析结构力学与有限元[J]. 动力学与控制学报,2006,2(4):1-8.
ZHONG Wan-xie. Analytical Structural Mechanics and Finite Element[J]. Journal of Dynamics and Control, 2006,2(4):1-8.
[4] 钟万勰. 应用力学对偶体系[M].科学出版社,2002.
ZHONG Wan-xie. DualSystem in Applied Mechanics[M]. Science Press,2002.
[5] 钟万勰,姚征. 时间有限元与保辛[J]. 机械强度,2005,27(2):178-183.
ZHONG Wan-xie,YAO Zheng. Time Domain FEM and Symplectic Conservation[J]. Journal of Mechanical Strength, 2005,27(2):178-183.
[6] SUI Y F and ZHONG W X. An Adjoint Simplectic Subspace Iteration Method of Gyroscopic Dynamic System and the Application In Rotor Dynamic System[C], the Fourth ECCOMAS 2004.
[7] 隋永枫,钟万勰.大型不正定陀螺系统本征值问题[J].应用数学和力学,2006,27(1): 13-20.
SUI Yong-feng, ZHONG Wan-xie. Eigenvalue Problem of a Large Scale Indefinite Gyroscopic Dynamic System[J].Applied Mathematics and Mechanics,2006,27(1): 13-20.
[8] 张娟娟,崔升,冯永新.多支承转子系统辛空间传递矩阵法及应用[J].振动与冲击,2017,36(16):32-36,62.
ZHANG Juan-juan,CUI Sheng,FENG Yong-xin. A transfer matrix method for a multi-support rotor system in the symplectic space and its application[J]. Journal of Vibration and Shock,36(16):32-36,62.
[9] 隋永枫,高强,钟万勰.陀螺系统时间有限元方法[J].振动与冲击,2012,31(13):95-98.
SUI Yong-feng,GAO Qiang,ZHONG Wan-xie. Time domain finite element method for gyroscopic systems[J]. Journal of Vibration and Shock,2012,31(13):95-98.
[10] 隋永枫.转子动力学的求解辛体系及其数值计算方法[D].大连:大连理工大学博士论文,2006.
SUI Yong-feng, A Symplectic systematic methodology of rotor dynamics and the corresponding numerical computational methods[D].Dalian:Dalian University of Technology,2006.
[11] 李强,马龙,许伟伟等.椭圆轴承—转子耦合系统动力学特性研究[J].振动与冲击,2016,35(11):174-179.
LI Qiang,MA Long,Xu Wei-wei,et al. Dynamic characteristics analysis of an elliptical bearing-rotor coupled system[J]. Journal of Vibration and Shock,2016,35 (11) :174-179.