密集型矩形阵列参数对激光Lamb波成像的影响分析

刘增华,马春雷,陈洪磊,何存富,吴斌

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 87-93.

PDF(1323 KB)
PDF(1323 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 87-93.
论文

密集型矩形阵列参数对激光Lamb波成像的影响分析

  • 刘增华,马春雷,陈洪磊,何存富,吴斌
作者信息 +

Analysis on the influence of compact rectangular array parameters on laser-based Lamb wave imaging

  • LIU Zenghua,MA Chunlei,CHEN Honglei,HE Cunfu,WU Bin
Author information +
文章历史 +

摘要

激光超声技术具有非接触、检测效率高等优点,在无损检测领域受到广泛关注。充分利用激光超声技术的高空间分辨率特性,结合密集型矩形阵列和激光Lamb波技术进行板中缺陷检测。采用连续小波变换对频带宽、时域分辨率低的激光Lamb波信号进行提取,得到特定频率下具有高时域分辨率的窄带信号。利用线性映射补偿技术消除所提取窄带信号中的频散。消除频散的信号用于缺陷成像。最后,结合幅值成像技术和符号相干因子成像技术对频散补偿后的信号进行处理,实现铝板中缺陷的成像和定位。在此基础上,进一步对不同的阵元数量和阵元间距对密集型矩形阵列指向性和缺陷成像质量的影响进行分析。当阵元数量为16,阵元间距为一个Lamb波波长时,主瓣宽度较窄且没有栅瓣出现,缺陷成像质量得到有效提高。

Abstract

Laser ultrasonic technology has the advantages of non-contact and high inspection efficiency. It has been widely concerned in the field of nondestructive testing. In this paper, the characteristic of high spatial resolution of laser ultrasound technology is fully used. Defect detection in plate is carried out by the combination of compact rectangular array and laser-based Lamb wave technology. The continuous wavelet transform is used to process the wide-band Lamb wave signal with low time-domain resolution, which can obtain a narrow-band signal with high time-domain resolution at a given frequency. The linear mapping compensation technology is used to eliminate the dispersion in the narrow-band signal. Obtained signals after dispersion compensation are used for defect imaging. Finally, dispersion compensation signals are processed by combining with the amplitude imaging technique and the sign coherence factor imaging technique, and then defect imaging and location is achieved in the aluminum plate. Based on this, the effect of element spacing and number on beam steering and quality of defect imaging of compact rectangular array are analyzed. When the number of array elements is 16 and the array element spacing is one wavelength of Lamb wave mode, the width of the main lobe is narrow and there are no grating lobes, the defect imaging quality improved effectively.

关键词

激光Lamb波 / 密集型矩形阵列 / 连续小波变换 / 频散补偿 / 符号相干因子成像

Key words

laser-based Lamb waves / compact rectangular array / continuous wavelet transform / dispersion compensation / sign coherence factor imaging

引用本文

导出引用
刘增华,马春雷,陈洪磊,何存富,吴斌. 密集型矩形阵列参数对激光Lamb波成像的影响分析[J]. 振动与冲击, 2020, 39(14): 87-93
LIU Zenghua,MA Chunlei,CHEN Honglei,HE Cunfu,WU Bin. Analysis on the influence of compact rectangular array parameters on laser-based Lamb wave imaging[J]. Journal of Vibration and Shock, 2020, 39(14): 87-93

参考文献

[1]  ROSE J L. A baseline and vision of ultrasonic guided wave inspection potential[J]. Journal of Pressure Vessel Technology, 2002,124(3):273-282.
[2]  刘增华, 曹丽华, 何存富, 等. 铝板中激光Lamb波信号的模态分析与缺陷检测研究[J].实验力学,2016, 31(4):425-430.
LIU Zenghua, CAO Lihua, HE Cuncu, et al. On the mode identification and defect detection of laser- induced Lamb waves signal in an aluminum plate[J]. Journal of Experimental Mechanics,2016, 31 (4):425- 430.
[3]  WILCOX P. A rapid signal processing technique to remove the effect of dispersion from guided wave signals[J]. IEEE Transactions on Ultrasonics, Ferro- electrics, and Frequency,2003,50(4):419-427.
[4]  WILCOX P, LOWE M, CAWLEY P. The effect of dispersion on long-range inspection using ultrasonic guided waves[J]. NDT&E International,2001,34(1): 1-9.
[5]  LIU L, YUAN F G. A linear mapping technique for dispersion removal of Lamb waves[J]. Structural Health Monitoring,2010, 9(1):75-86.
[6]  JHANG K Y, SHIN M J, LIM B O. Application of the laser generated focused-Lamb wave for non-contact imaging of defects in plate[J]. Ultrasonics,2006,44 (Suppl):e1265-e1268.
[7]  ZHOU Z G, ZHANG K S, ZHOU J H, et al. Application of laser ultrasonic technique for non- contact detection of structural surface-breaking cracks[J]. Optics and Laser Technology,2015,73:173- 178.
[8]  ZHANG K S, ZHOU Z G. Quantitative characterization of disbonds in multilayered bonded composites using laser ultrasonic guided waves[J].NDT and E International,2018,97:42-50.
[9]  TIAN ZH H, HOWDEN S, MA Z Y, et al. Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates[J]. Mechanical Systems and Signal Processing, 2019, 121:158-170.
[10]  LEE S E, LIU P P, YOUNG W K, et al. Study on effect of laser-induced ablation for Lamb waves in a thin plate[J]. Ultrasonics,2019,91:121-128.
[11]  SU Z, YE L, LU Y. Guided Lamb waves for identifi- cation of damage in composite structures: A review[J]. Journal of Sound and Vibration,2006,295(3):753-780.
[12]  LIU Z H, YU H T, FAN J W, et al. Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm[J]. Smart Materials and Structures,2015,24(4):045014(15pp).
[13]  WANDOWSKI T, MALINOWSKI P H, OSTACH- OWICZ W M. Circular sensing networks for guided waves based structural health monitoring[J]. Mechanical Systems and Signal Processing,2016,66 (57): 248-267.
[14]  LIU Z H, FENG X J, HE C F, et al. Quantitative rectangular notch detection of laser-induced Lamb waves in aluminium plates with wavenumber analysis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(2):244-255.
[15]  HE, LECKEY C A C, LESER P E , et al. Multi-mode reverse time migration damage imaging using ultrasonic guided waves[J]. Ultrasonics, 2019, 94: 319-331.
[16]  HAN J H, KIM Y J. Time-frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave[J]. Mechanical Systems and Signal Processing, 2015,54(55):336-356.
[17]  LIU Z H, SUN K M, SONG G R, et al. Damage localization in aluminum plate with compact rectangular phased piezoelectric transducer array[J]. Mechanical Systems and Signal Processing,2016,70: 625-636.
[18]  钟永腾, 袁慎芳, 邱雷. 基于梅花阵列的复合材料全方位冲击定位方法[J]. 复合材料学报,2014,31(5): 1369-1374.
ZHONG Yongteng, YUAN Shenfang, QIU Lei. Omni-directional impact localization method on composite structure using plum blossom array[J]. Acta Materiae Compositae Sinica,2014,31(5): 1369- 1374.
[19]  王强, 袁慎芳, 陈小惠, 等. 主动Lamb波合成波阵面损伤成像监测方法[J]. 仪器仪表学报,2011,32 (11):2468-2474.
WANG Qiang, YUAN Shenfang, CHEN Xiaohui, et al. Active Lamb wave synthetic wavefront damage imaging monitoring method[J]. Chinese Journal of Scientific Instrument,2011,32(11):2468-2474.
[20]  朱晓黎. 对于提高压电超声换能器阵指向性的研究[D]. 华中科技大学,2007.
ZHU Xiaoli. Research of sharpening directivity of piezoelectric ultrasonic transducer array[D]. Huazhong University of Science & Technology,2007.
[21]  WOOH S C, SHI Y J. A simulation study of the beam steering characteristics for linear phased arrays[J]. Journal of Nondestructive Evaluation,1999,18(2):  39-57.
[22]  CLAY A C, WOOH S C, AZAR L, et al. Experimental study of phased array beam steering characteristics[J]. Journal of Nondestructive Evaluation,1999,18(2): 59-71.
[23]  杨天雪, 徐春广, 肖定国, 等. 超声相控线阵探头线列参数对波束指向性的影响[J]. 无损检测,2009, 31(3):181-185.
YANG Tianxue, XU Chunguang, XIAO Dingguo, et al. The influence of dimensional parameters of linear phased array transducer on beam directivity[J]. Nondestructive testing,2009,31(3):181- 185.
[24]  杨敬. 基于虚拟聚焦的板结构兰姆波换能器阵列检测方法研究[D]. 北京工业大学, 2010.
[25]  Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15(4):723-736.
[26]  HOLMES C, DRINKWATER B W, WILCOX P. Post- processing of the full matrix of ultrasonic transmit- receive array data for non-destructive evaluation[J]. NDT&E International, 2005,38(8):701- 711.
[27]  HIGUTI R T, MARTINEZ-GRAULLERA O,MART- IN C J, et al. Damage characterization using guided wave linear arrays and image compounding techni- ques[J]. IEEE Transactions on Ultrasonics, Ferro- electrics, and Frequency Control,2010,57(9):1985- 1995.

PDF(1323 KB)

Accesses

Citation

Detail

段落导航
相关文章

/