一类无足自驱动系统的运动特性分析

李国芳,俞力洋,丁旺才,吴少培

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 9-16.

PDF(2384 KB)
PDF(2384 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 9-16.
论文

一类无足自驱动系统的运动特性分析

  • 李国芳,俞力洋,丁旺才,吴少培
作者信息 +

Motion characteristics analysis of a wheel-free self-driving system

  • LI Guofang,YU Liyang,DING Wangcai,WU Shaopei
Author information +
文章历史 +

摘要

建立了一类简谐激励作用下、两自由度含干摩擦无足自驱动系统的力学模型,描述并分析了系统的运动特性,得到了系统参数选择的最佳范围。研究发现:在低频区,随着激励频率 的减小,擦边分岔诱导系统碰撞次数逐渐增加,直至颤振序列;在高频区,系统存在混沌运动。在一个完整周期内,基体的运动由粘滞、正向驱进和负向驱进三种中的一种或多种组成;系统平均驱进速度 对激励频率 和质量比 的变化较敏感,摩擦比 、间隙 、刚度比 对系统的影响相对较小,质量比 的最佳选择范围为 ;系统正向和负向驱进的最大平均速度出现在低频区和质量比较小时;在高频区,基体趋于粘滞状态。本文的研究结果和方法,可为无足自驱动系统的设计及参数优化提供一定的理论依据。

Abstract

A mechanical model of a two-degrees-of-freedom self-driving system with dry friction subject to simple harmonic excitation is established. The motion characteristics of the system are described and analyzed, and the optimal range of system parameter selection is obtained. The study found that in the low frequency region, with the decrease of the excitation frequency , the number of the impact induced by the grazing bifurcation gradually increases until the chatter sequence; In the high frequency, the chaotic motion can be observed; In a complete cycle, the motion of the substrate consists of one or more of three types: sticking motion, forward drive motion, and negative drive motion; the average driving speed of the system is sensitive to changes in the excitation frequency and mass ratio , the friction ratio , clearance and stiffness ratio have relatively weak influence on the system, and the best choice range of mass ratio is ; the maximum average speed of the forward and negative drive of the system occurs in the low frequency region and the small mass ratio; in the high frequency region, the substrate tends to be sticking motion.The research results and methods in this paper can provide some theoretical basis for the design and parameter optimization of the wheel-free self-driving system.

关键词

干摩擦 / 无足自驱动系统 / 驱进速度 / 擦边分岔 / 颤振

Key words

 dry friction / wheel-free self-driving system / driving speed / grazing bifurcation / chatter

引用本文

导出引用
李国芳,俞力洋,丁旺才,吴少培. 一类无足自驱动系统的运动特性分析[J]. 振动与冲击, 2020, 39(14): 9-16
LI Guofang,YU Liyang,DING Wangcai,WU Shaopei. Motion characteristics analysis of a wheel-free self-driving system[J]. Journal of Vibration and Shock, 2020, 39(14): 9-16

参考文献

[1] Vartholomeos P, Papadopoulos E. Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators[J]. Journal of Dynamic Systems Measurement and Control, 2006, 128(1): 122–33.
[2] Li H, Furuta K, Chernousko FL. Motion generation of the capsubot using internal force and static friction[C]. In:Proceedings of the 45th IEEE conference on decision and control, San Diego, CA, USA, 2006: 6575–6580.
[3] Liu Y, Wiercigroch M, Pavlovskaia E, et al. Modeling of a vibro-impact capsule system[J]. International Journal of Mechanical Sciences, 2013, 66: 2–11.
[4] Bolotnik NN, Zeidis IM, Zimmermann K, et al. Dynamics of control ledmotion of vibration-driven systems[J]. Journal of Computer and Systems Sciences International, 2006, 45: 157–167.
[5] Su G, Zhang C, Tan R, et al. A design of the electromagnetic driver for the internal force-static friction capsubot[C]. In: Proceedings of the IEEE/RSJ inter- national conference on intelligent robots and systems, St. Louis, USA, 2009: 613–617.
[6] F.L. Chernous’ ko. Analysis and optimization of the motion of a body controlled by means of a movable internal mass[J]. Journal of Applied Mathematics and Mechanics , 2006, 70(6): 819–842.
[7] LIU Peng-cheng, YU Hong-nian, CANG Shuang. Modelling and analysis of dynamic frictional interactions of vibro-driven capsule systems with viscoelastic property. European Journal of Mechanics - A/Solids, 2019, 74: 16-25.
[8] 王二虎,丁旺才,李国芳,等. 小型电磁振动驱动器的设计与参数匹配分析[J]. 机械科学与技术,2018,37(07):1022-1026.
WANG Er-hu, DING Wang-cai, LI Guo-fang, et al. Designing and Analyzing Parameter Matching of a Small Electromagnetic Vibration-driving System. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(07): 1022-1026.
[9] HOLMES P J. The dynamics of repeated impacts with asinusoidally vibrating table[J]. Journal of Sound and Vibration, 1982, 84(2): 173-189.
[10] SHAW S W, HOLMES P J. A periodically forced impact oscillator with large dissipation[J]. Journal of Applied Mechanics, 1983, 50( 4a): 849-857.
[11] 张有强,丁旺才. 干摩擦对碰撞振动系统周期运动的影响分析[J]. 振动与冲击,2009,28(6):110-116.
ZHANG You-qiang, DING Wang-cai. Study on effect of dry friction on periodic motion of impact vibration system [J]. Journal of Vibration and Shock, 2009, 28(6): 110-116.
[12] 丁旺才,张有强,张庆爽. 含干摩擦振动系统的非线性动力学分析[J]. 工程力学,2008,25(10): 212-213.
DING Wang-cai, ZHANG You-qiang, ZHANG Qing-shuang. Nonliner dynamic analysis of vibration system with dry friction[J]. Enggineering Mechanics, 2008, 25(10): 212-213.
[13] 秦志英,陆启韶. 非光滑分岔的映射分析[J]. 振动与冲击, 2009, 28(6): 79-81.
QIN Zhi-ying, LU Qi-shao. Map analysis for non-smooth    bifurcations[J]. Journal of Vibration and Shock, 2009, 28(6): 79-81.
[14] 乐源,缪鹏程. 一类碰撞振动系统的激变和拟周期-拟周期阵发性[J]. 振动与冲击,2017,36(07):1-7,20.
YUE Yua, MIAO Peng-cheng. Crisis and quasiperiod- quasiperiod intermittency in a vibro-impact system. Journal of Vibration and Shock, 2009, 28(6): 79-81.
[15] 伍新,徐慧东,文桂林,等. 三自由度碰撞振动系统Poincaré映射叉式分岔的反控制[J]. 振动与冲击,2016,35(20):24-29.
WU Xin, XU Hui-dong, WEN Guilin, et al. Anti- controlling pitchfork bifurcation on Poincaré map of a three- degree-of-freedom vibro-impact system. Journal of Vibration and Shock, 2016, 35(20): 24-29.
[16] DING W C, XIE J H. Interaction of Hopf and period doubling bifurcations of a vibro-impact system[J]. Journal of Sound and Vibration, 2004, 275(1-2): 29-45.

PDF(2384 KB)

418

Accesses

0

Citation

Detail

段落导航
相关文章

/