不同冲击速度条件下矩形巷道围岩变形-开裂过程数值模拟

王学滨1,2,田锋2,白雪元2,郭翔2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 94-101.

PDF(1418 KB)
PDF(1418 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (14) : 94-101.
论文

不同冲击速度条件下矩形巷道围岩变形-开裂过程数值模拟

  • 王学滨1,2,田锋2,白雪元2,郭翔2
作者信息 +

Numerical simulation on the deformation-cracking process of rectangular tunnel surrounding rock under different impact velocities

  • WANG Xuebin1,2,TIAN Feng2,BAI Xueyuan2,GUO Xiang2
Author information +
文章历史 +

摘要

利用自主开发的拉格朗日元与变形体离散元耦合的连续-非连续方法开展了不同冲击速度条件下矩形巷道围岩变形-开裂过程的数值模拟研究。当岩石单元的应力满足剪切开裂判据时,考虑了应力脆性跌落效应,在此过程中,围压保持不变。为了检验该方法的正确性,开展了单轴压缩条件下岩样变形-开裂过程的数值模拟研究。针对矩形巷道围岩的计算表明:1)冲击速度低时载荷-位移曲线呈单峰特点;冲击速度高时载荷-位移曲线呈多峰特点;2)冲击速度低时围岩的开裂呈渐进性特点;冲击速度高时围岩的开裂呈间歇性特点,这与在冲击过程中围岩中过去形成的一种较为稳定的结构(拱)被打破,并在其外围形成了新的稳定结构(拱)有关;3)在模型相同垂直方向位移时,冲击速度低时围岩两帮的开裂深度较大,这说明冲击速度低时应力的传递较为均匀,冲击速度低时的结果(例如,V形坑内岩石碎块涌入巷道)与围岩的片帮类似;冲击速度高时的结果(例如,岩石碎块的弹射现象)与岩爆类似。

Abstract

Using a continuum-discontunuum method where the Lagrangian element method and deformational discrete element method were combined, deformation-cracking processes of the rectangular tunnel surrounding rock under different impact velocities was modeled numerically. When stresses acting on rock elements satisfy the shear failure criterion, the stress drop in the form of brittleness was considered, in which the confining pressure remains constant. To validate the present method, the deformation-cracking process of a rock specimen in uniaxial compression was modeled numerically. It is found from results of the rectangular tunnel surrounding rock that: 1) at lower impact velocities, load-displacement curves of the surrounding rock exhibit a single peak, while at higher impact velocities they exhibit several peaks; 2) at lower impact velocities, the failure of the surrounding rock is progressive, while it is intermittent at higher impact velocities, which is related to the fact that the previous arch fails during the impact process and a new larger arch is formed; 3) at the same vertical displacement of the surrounding rock, the cracking depth of two sides of the surrounding rock is larger at lower impact velocities than at higher impact velocities, indicating a relatively uniform stress propagation at lower impact velocities. Results (for example, rock blocks in V-shape notches are squeezed into the tunnel) at lower impact velocities are similar to rib spalling of two sides of the surrounding rock, while results (such as ejections of rock blocks) at higher impact velocities are similar to rockbursts.

关键词

巷道 / 围岩 / 开裂 / 冲击速度 / 位移 / 载荷 / 数值模拟

Key words

 tunnel / surrounding rock / cracking / impact velocity / displacement / load / numerical simulation

引用本文

导出引用
王学滨1,2,田锋2,白雪元2,郭翔2. 不同冲击速度条件下矩形巷道围岩变形-开裂过程数值模拟[J]. 振动与冲击, 2020, 39(14): 94-101
WANG Xuebin1,2,TIAN Feng2,BAI Xueyuan2,GUO Xiang2. Numerical simulation on the deformation-cracking process of rectangular tunnel surrounding rock under different impact velocities[J]. Journal of Vibration and Shock, 2020, 39(14): 94-101

参考文献

[1] 朱晶晶, 李夕兵, 宫凤强, 等. 冲击载荷作用下砂岩的动力学特性及损伤规律[J]. 中南大学学报(自然科学版), 2012, 43(7): 2701-2707.
ZHU Jingjing, LI Xibing, GONG Fengqiang, et al. Experimental test and damage characteristics of  sandstone under uniaxial impact compressive loads[J]. Journal of Central South University (Science and Technology) , 2012, 43(7): 2701-2707.
[2] 朱鹏瑞, 宋卫东, 徐琳慧, 等. 冲击荷载作用下胶结充填体的力学特性研究[J]. 振动与冲击, 2018, 37(12): 131-166.
ZHU Pengrui, SONG Weidong, XU Linhui, et al. A study on mechanical properties of cemented backfills under impact compressive loading[J]. Journal of Vibration and Shock, 2018, 37(12): 131-166.
[3] 高长辉, 马芹永, 马冬冬. 主动围压作用下水泥灰质黏土SHPB试验与分析[J], 振动与冲击, 2018, 37(14): 160-167.
GAO Changhui, MA Qinyong, MA Dongdong. SHPB test and analysis on cemented silty clay under confining pressure conditions[J]. Journal of Vibration and Shock, 2018, 37(14): 160-167.
[4] ZHANG S C, LI Y Y, SHEN B T, et al. Effective evaluation of pressure relief drilling for reducing rock bursts and its application in underground coal mines. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 7-16.
[5] JIA H S, WANG E Y, SONG D Z, et al. Precursory changes in wave velocity for coal and rock samples under cyclic Loading. Results in Physics, 2019, 12: 432-434.
[6] GONG F Q, LUO Y, LI X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 413-427.
[7] ZHAO X G, CAI M. Influence of specimen height-to-width ratio on the strain burst characteristics of Tianhu granite under true-triaxial unloading conditions[J]. Canadian Geotechnical Journal, 2015, 52(7): 890-902.
[8] CAI M, KAISER P K. In-situ rock spalling strength near excavation boundaries[J]. Rock Mechanics & Rock Engineering, 2014, 47(2): 659-675
[9] LIU G F, FENG X T, JIANG Q, et al. In situ observation of spalling process of intact rock mass at large cavern excavation[J]. Engineering Geology, 2017, 226: 52-69.
[10] DU K, TAO M, LI X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453.
[11] 宫凤强, 罗勇, 司雪峰, 等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1634-1648.
GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634-1648.
[12] 宫凤强, 伍武星, 李天斌, 等. 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 1-14.
GONG Fengqiang, WU Wuxing, LI Tianbin, et al. Simulation experimental study on spalling failure of surrounding rock in rectangular tunnel of deep hard rock[J]. Rock and Soil Mechanics, 2019, 40(6): 1-14.
[13] 陈陆望, 殷晓曦, 赵瑜. 圆形地下洞室坚硬脆性围岩岩爆的模拟[J]. 应用基础与工程科学学报, 2009, 17(6): 935-942.
Chen Luwang, Yin Xiaoxi, Zhao Yu. Simulation of rockburst in hard and brittle surrounding rocks of circular underground cavern[J]. Journal of Basic Science and Engineering, 2009, 17(6): 935-942.
[14] 赵瑜, 张春文, 刘新荣, 等.高应力岩石局部化变形与隧道围岩灾变破坏过程[J]. 重庆大学学报(自然科学版), 2011, 34(4): 100-106.
Zhao Yu, Zhang Chunwen, Liu Xinrong, et al. Study on strain localization and progressive failure of surrounding rock under high pressure environment[J]. Journal of Chongqing University(Science and Technology), 2011, 34(4): 100-106.
[15] 王学滨, 陶帅, 潘一山, 等. 基于非线性屈服准则及主应力判据的圆形巷道围岩岩爆过程的数值模拟[J]. 防灾减灾工程学报, 2012, 32(2): 131-137.
Wang Xuebin, Tao Shuai, Pan Yinshan, et al. Numerical simulation of rockburst process of surrounding rock in circular tunnel based on nonlinear yielding and principal stress criteria[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(2): 131-137.
[16] 李俊峰, 张小趁, 刘红岩, 等. 突发地质灾害中应急数值模拟技术应用浅析[J]. 工程地质学报, 2016, 24(4): 569-577.
Li Junfeng, Zhang Xiaochen, Liu Hongyan, et al. Application of numerical simulation technology to emergent rescuing of geological disaster[J]. Journal of Engineering Geology, 2016, 24(4): 569-577.
[17] 王鹰, 蔡扬, 魏有仪, 等. 引汉济渭工程秦岭隧洞岩爆数值模拟与岩爆预测研究[J]. 西藏大学学报(自然科学版), 2016, 31(1): 89-96, 112.
Wang Ying, Cai Yang, Wei Youyi, et al. Research on numerical simulation and prediction of rock burst at Qinling tunnel in the Yinghan-Weihe river project[J]. Journal of Tibet University, 2016, 31(1): 89-96, 112.
[18] Lisjak A, Figi D, Grasselli G. 2014. Fracture development around deep underground excavations: Insights from FDEM modeling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 493-505.
[19] Mitelman A, Elmo D. 2014. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 565-573.
[20] 赵日峰. 山东煤矿冲击地压事故分析及防护措施[C]//2007年山东省煤矿冲击地压防治研讨会.青岛:山东省煤炭学会, 2007.
ZHAO Rifeng. Analysis and protective measures of rock burst accident in shandong coal mine,Shandong Coal Science and Technology, 2007, 1-4.
[21] 潘一山. 煤矿冲击地压[M]. 北京:科学出版社, 2018.
[22] 王学滨. 拉格朗日元方法、变形体离散元方法及虚拟裂纹模型耦合的连续-非连续介质力学分析方法研究[R]. 北京:中国矿业大学(北京). 2015.
[23] 郭翔, 王学滨, 白雪元, 等. 加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J]. 岩土力学, 2017, 38(1): 214-220.
GUO Xiang, WANG Xuebin, BAI Xueyuan, et al. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method[J]. Rock and Soil Mechanics, 2017, 38(1): 214-220.
[24] 王学滨, 白雪元, 祝铭泽. 基于连续-非连续方法的地质体材料变形-拉裂过程模拟-以岩样紧凑拉伸试验为例[J]. 地质力学学报, 2018, 24(3): 332-340.
WANG Xuebin, BAI Xueyuan, ZHU Mingze. Modeling of deformation-cracking processes of geomaterials in compact tension tests based on a continuum-discontinuum method[J]. Journal of Geomechanics, 2018, 24(3): 332-340.
[25] 王学滨, 郭翔, 芦伟男, 等. 单层采动诱发长壁开采水平岩层开裂、冒落过程模拟-基于连续-非连续方法[J]. 防灾减灾工程学报, 2018, 38(1): 1-6.
WANG Xuebin, GUO Xiang, LU Weinan, et al. Modeling of cracking process of specimens in uniaxial tension and with prescribed positions permitted to crack using a continuum-discontinum method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1):1-6.
[26] Munjiza A. The combined finite-discrete element method[M]. England: John Wiley & Sons Ltd, 2004.
[27] 张楚汉, 金峰, 侯艳丽, 等. 岩石和混凝土离散-接触-断裂分析[M]. 北京: 清华大学出版社, 2008.
[28] 郑宏, 葛修润, 李焯芬.脆塑性岩体的分析原理及其应用[J]. 岩石力学与工程学报, 1997, 16(1): 9-22.
Zheng Hong, Ge Xiurui, Li Zhuofen. Analysis principle for rock mass with brittle plasticity and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(1): 9-22.
[29] 强辉, 周华强, 常庆粮. 岩石峰值强度前后相关力学特性的回归分析[J]. 江西煤炭科技, 2006, 2: 48-50.
QIANG Hui, ZHOU Huaqiang, CHANG Qingliang. Regress Analysis of Mechanics Characteristic of the Rock Strength at the Pre-peak and Post-peak[J]. JIANGXI COAL SCIENCE & TECHNOLOGY, 2006, 2: 48-50.
[30] FENG X T, XU H, QIU S L, et al. In situ observation of rock spalling in the deep tunnels of the China Jinping Underground Laboratory (2400m Depth)[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1193-1213.
[31] 齐燕军, 东兆星, 靖洪文, 等. 不同岩性巷道岩爆灾变特征模型试验研究[J]. 中国矿业大学学报, 2017, 46(6): 1239-1250.
QI Yanjun, DONG Zhaoxing, JING Hongwen, et al. Experimental modeling on failure characteristics of rockburst with different properties tunnel. Journal of China University of Mining & Technology, 2017, 46(6): 1239-1250.

PDF(1418 KB)

Accesses

Citation

Detail

段落导航
相关文章

/