风电齿轮箱两级行星齿轮传动系统的非线性动力学特性

向玲,刘随贤,张军华

振动与冲击 ›› 2020, Vol. 39 ›› Issue (15) : 193-199.

PDF(1873 KB)
PDF(1873 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (15) : 193-199.
论文

风电齿轮箱两级行星齿轮传动系统的非线性动力学特性

  • 向玲,刘随贤,张军华
作者信息 +

Nonlinear dynamic characteristics of two-stage planetary gear transmission system in wind turbinegearbox

  • XIANG Ling, LIU Suixian, ZHANG Junhua
Author information +
文章历史 +

摘要

考虑风电齿轮箱两级行星轮系传动系统各齿轮副的时变啮合刚度、综合啮合误差和齿侧间隙等非线性因素的基础上,建立了广义坐标下增速齿轮箱两级行星齿轮传动系统的动力学模型,采用变步长gill积分法对该模型进行求解;采用分岔图、相图、FFT频谱图、poincaré截面图及最大Lyapunov指数图分析了激励频率和啮合阻尼比对系统振动响应及分岔特性的影响。结果表明:系统在多种非线性因素的耦合作用下会表现出丰富的非线性动力学行为,随着激励频率的增大,系统在混沌运动、拟周期运动和倍周期运动之间切换和变化,且退出混沌的方式多为倒分岔;在保证系统传动效率的前提下适当提高系统的啮合阻尼比,能够明显弱化和抑制系统的混沌运动,减小其振动幅度,对提高系统的稳定性具有一定的作用。

Abstract

Based on the time-varying meshing stiffness, meshing error and backlash of the two-stage planetary gear train of the wind turbine gearbox, the dynamics model of the two-stage planetary gear transmission system in generalized coordinates is established. The variable step gill integral method is used to solve the model. Using the bifurcation diagram, phase diagram, FFT spectrogram, poincaré maps and the maximum Lyapunov exponent diagram comprehensively, the influence of excitation frequency and meshing damping ratio on the system vibration response and bifurcation characteristics was analyzed. The results show that the system exhibits rich nonlinear dynamic behavior under the coupling of various nonlinear factors. With the increase of excitation frequency, the system switches between multi-periodic motion, quasi-periodic motion and chaotic motion. And the way to exit chaos is backward bifurcation. In addition, under the premise of ensuring the system transmission efficiency, properly increasing the meshing damping ratio of the system can significantly suppress the chaotic motion of the system, reduce the vibration amplitude, and improve the stability of the system.

关键词

风电齿轮箱 / 两级行星齿轮 / 非线性动力学 / 分岔 / 混沌

Key words

Wind Turbine / Two-stage planetary gear / Nonlinear dynamic / Bifurcation / Chaos

引用本文

导出引用
向玲,刘随贤,张军华. 风电齿轮箱两级行星齿轮传动系统的非线性动力学特性[J]. 振动与冲击, 2020, 39(15): 193-199
XIANG Ling, LIU Suixian, ZHANG Junhua. Nonlinear dynamic characteristics of two-stage planetary gear transmission system in wind turbinegearbox[J]. Journal of Vibration and Shock, 2020, 39(15): 193-199

参考文献

[1] 邱星辉, 韩勤锴, 褚福磊. 风力机行星齿轮传动系统动力学研究综述[J]. 机械工程学报, 2014, 50(11):23-36.
QIU Xing-hui, HAN Qin-kai, CHU Fu-lei. Review on dynamic analysis of wind turbine geared transmission system[J]. Journal of Mechanical Engineering, 2014, 50(11):23-36.
[2] KAHRARMAN A. Planetary Gear Train Dynamics[J]. Journal of Mechanical Design, 1994, 116(3):713-720.
[3] 孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636-639.
SUN Zhi-min, JI Lin-hong, SHEN Yun-wen. Nonlinear dynamics of 2K-H planetary gear train[J]. Journal of Tsinghua University(Science and Technology), 2003, 43(5):636-639.
[4] 李同杰, 朱如鹏, 鲍和云等. 行星齿轮系扭转非线性振动建模与运动分岔特性研究[J]. 机械工程学报, 2011, 47(21):76-83.
LI Tong-jie, ZHU Ru-peng , BAO He-yun et al. Nonlinear torsional vibration modeling and bifurcation characteristic study of a planetary gear train[J]. Journal of Mechanical Engineering, 2011, 47(21):76-83.
[5] 向玲, 高楠, 唐亮,等. 内外激励下风电齿轮传动系统的非线性动力学特性[J]. 振动与冲击, 2018.
XIANG Ling, GAO Nan, TANG Liang, et al. Nonlinear Dynamic Feature of Wind Turbine’s Gear Trains Subjected to Internal and External Excitation[J]. Journal of Vibration and Shock, 2018, 37(5):126-132.
[6] WANG Xiao-sun, WU Shi-jing. Nonlinear dynamic modeling and numerical simulation of the wind turbine’s gear train[C]. International Conference on Electrical and Control Engineering (ICECE), 2011.
[7] 李晟, 吴庆鸣, 张志强, 等. 两级行星齿轮系分岔与混沌特性研究[J]. 中国机械工程, 2014, 25(7):931-937.
LI Sheng, WU Qing-ming, ZHANG Zhi-qiang et al. Bifurcation and chaos characteristics of two-stage planetary gear train sets[J]. China Mechanical Engineering, 2014, 25(7):931-937.
[8] LI Sheng, WU Qing-ming, ZHANG Zhi-qiang . Bifurcation and chaos analysis of multistage planetary gear train[J]. Nonlinear Dynamics, 2014, 75(1-2).
[9] 王均刚, 王勇, 霍志璞. 风电齿轮箱多级行星齿轮耦合传动系统数学建模及振型[J]. 工程科学与技术, 2013, 45(3):189-195.
WANG Jun-gang, WANG Yong, HUO Zhi-pu. Establishment of Mathematic Model and Study of Vibration Modes for Multi-stage Planetary Gear Train of Wind Turbine Gearboxes[J]. Journal of Sichuan university 2013, 45(3): 189-195.
[10] 李润方, 王建军. 齿轮系统动力学——振动、冲击、噪声[M]. 北京:科学出版社, 1997.
LI Run-fang, WANG Jian-jun. Dynamics of gear system:vibration, shock and noise[M]. Beijing: Science Press, 1997.
[11] LIN J, PARKER R G. Planetary gear parametric instability caused by mesh variation[J]. Journal of Sound and Vibration, 2002, (1):129-145.
[12] PARKER R G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration, 2000, 236(4):561-573.
[13] 孔强.兆瓦级风力发电机随机风载荷预测及齿轮传动系统动力学研究[D].山东大学,2016.
KONG Qiang. The Research on the Forecasting of Ramdom Wind Load and the Gear Transmission system Dynamics of Megawatt Wind Turbine[D]. Shandong university,2016.
[14] 张德丰. MATLAB数值分析[M]. 北京:机械工业出版社, 2012.
ZHANG De-feng. MATLAB numerical analysis [M]. Beijing: China Machine Press, 2012.

PDF(1873 KB)

Accesses

Citation

Detail

段落导航
相关文章

/