N自由度柔性机械臂通用的动力学建模方法研究

余峰1,2,陈新元1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 103-111.

PDF(1412 KB)
PDF(1412 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 103-111.
论文

N自由度柔性机械臂通用的动力学建模方法研究

  • 余峰1,2,陈新元1,2
作者信息 +

A study on a general dynamic modeling method for N-degree of freedom flexible manipulators

  • YU Feng1,2,CHEN Xinyuan1,2
Author information +
文章历史 +

摘要

针对多自由度柔性机械臂动力学建模过程复杂的问题,提出一种适用于N自由度柔性臂刚柔耦合动力学建模的通用方法。该方法基于拉格朗日方程(Lagrange)和假设模态法(ASM),归纳推导得到了N自由度柔性机械臂动力学模型的最简通用符号表达式,根据该建模方法开发了“N-DOF柔性机械臂动力学方程符号计算软件”;最后以两自由度柔性机械臂为例进行位置跟踪控制实验,用开发的软件自动生成了动力学模型,并搭建了实物模型进行对比验证,结果具有一致性,表明了该建模方法的正确性。与传统建模方法相比,该建模方法可减少90%以上计算时间,极大降低了建模过程的复杂性,同时对多自由度柔性臂动力学建模也具有通用性。

Abstract

Aiming at the complex dynamic modeling process of multi-DOF flexible manipulators, a general method for rigid-flexible coupling dynamic modeling of N-DOF flexible manipulators was proposed.The method is based on the Lagrange equation and the assumed mode method (ASM).According to the modeling method, the symbolic calculation software of the dynamics equation of the N-DOF flexible manipulator was developed.Finally, the position tracking control experiment of a two-degree-of-freedom flexible manipulator was taken as an example, and the dynamic model was automatically generated by the developed software, and a real model was built to verify the consistency of the results, which proves the correctness of the modeling method.Compared with the traditional modeling method, the modeling method can reduce more than 90% of the calculation time, greatly reducing the complexity of the modeling process, and the multi-degree-of-freedom flexible arm dynamics modeling is also universal.

关键词

柔性机械臂 / N自由度 / 刚柔耦合 / 动力学建模

Key words

flexible manipulators / N degrees of freedom / rigid and flexible coupling / dynamics modeling

引用本文

导出引用
余峰1,2,陈新元1,2. N自由度柔性机械臂通用的动力学建模方法研究[J]. 振动与冲击, 2020, 39(16): 103-111
YU Feng1,2,CHEN Xinyuan1,2. A study on a general dynamic modeling method for N-degree of freedom flexible manipulators[J]. Journal of Vibration and Shock, 2020, 39(16): 103-111

参考文献

[1]丁汉.共融机器人的基础理论和关键技术[J].机器人产业,2016,(6):12-17.
DING H. Basic theory and key technology of coherent robot [J]. Robotics Industry , 2016, (6): 12-17.
[2] 王天然. 机器人技术的发展[J]. 机器人, 2017, 39(4):385-386.
WANG T R. Development of robotics, [J]. Robotics,  2017, 39 (4): 385-386.
 [3] TANG Y, CHEN W. Surface Modeling of Workpiece and Tool Trajectory Planning for Spray Painting Robot[J]. PloS one, 2015, 10(5): e0127139.
 [4]  ZAI D H, CHAO Y U N, Li C. Modeling and Trajectory Tracking Control of a Free-Floating Space Robot with Flexible Manipulators [J][J]. Robot, 2007, 29(1): 92-96.
 [5] WEN C. Dynamic modeling of multi-link flexible robotic manipulators[J]. Computers & Structures, 2001, 79(2): 183-195.
 [6] 刘杰,戴丽,赵丽娟等.混凝土泵车臂架柔性多体动力学建模与仿真[J]. 机械工程报, 2007, 43(11): 131-135.
LIU J, DAI L, ZHAO L J, et al. Modeling and Simulation of flexible multi-body dynamics of concrete pump truck boom [J]. Journal of Mechanical Engineering , 2007, 43 (11): 131-135.
 [7] ALESSANDRO D L, SICILIANO B. Closed-form dynamic model of planar multilink lightweight robots[J].  IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(4): 826-839.
 [8]ALESSANDRO D L, SICILIANO B. Inversion-based  nonlinear control of robot arms with flexible links[J].  Journal of Guidance, Control, and Dynamics,  1993, 16(6): 1169-1176.
 [9] SCIAVICCO L, SICILIANO B. Modelling and control of robot manipulators[M]. Springer Science & Business Media, 2012.
[10] ZHANG X, MILLS J K, CLEGHORN W L. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links[J]. Journal of Intelligent & Robotic Systems, 2007, 50(4): 323-340.
[11] WANG X, MILLS J K. FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator[J]. Applied Acoustics, 2005, 66(10): 1151-1161.
[12] WANG F Y, GAO Y. Advanced studies of flexible robotic manipulators: modeling, design, control and applications[M]. World Scientific, 2003.
[13] FU K S, GONZALEZ R, LEE C S G. Robotics: Control Sensing. Vis[M]. Tata McGraw-Hill Education, 1987.
[14] YOSHIKAWA T, OHTA A, KANAOKA K. State estimation and parameter identification of flexible manipulators based on visual sensor and virtual joint model[C]//Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. IEEE, 2001, 3: 2840-2845.
[15] GASPARETTO A. On the modeling of flexible-link planar mechanisms: experimental validation of an accurate dynamic model[J]. Journal of Dynamic Systems, Measurement, and Control , 2004, 126(2): 365-375.
[16] SUN J D, CAO G Z, Li W B, et al. Analytical inverse kinematic solution using the DH method for a 6-DOF robot[C]//Ubiquitous Robots and Ambient Intelligence (URAI), 2017 14th International Conference on. IEEE, 2017: 714-716.
[17] TOKHI, M O, ABUL K M A. Flexible robot manipulators: modelling, simulation and control[M]. Iet, 2008.
[18] ASADA HH, MA ZD, TOKUMARU HH. Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control. Journal of Dynamic Systems, Measurement, and Control ,1990;112(2):177-185.

PDF(1412 KB)

798

Accesses

0

Citation

Detail

段落导航
相关文章

/