为准确计算多层球形破片在爆炸驱动下的初速场,通过对装药结构的等效分析,基于Gurney假定和相邻层颗粒之间力和力的波动量等概率传递假定,忽略排列方式引起的孔隙率变化,应用动量和能量守恒建立了破片初速场的理论计算模型。该模型反映了炸药参数和破片的密度、层数和直径等因素对破片初速的影响;针对典型的爆炸驱动前向多层破片模型,用LS-DYNA3D非线性有限元程序对多层钨球破片的爆炸驱动过程进行数值模拟,开展了相关验证试验并分析了理论计算值与试验误差产生的原因,分析讨论了不同球形破片直径和不同破片层数下破片初速的变化情况。结果表明:理论计算值与数值模拟及试验结果吻合较好;随着相同直径破片层数的增大,破片初速减小,相邻层间破片的速度差值更大;层数相同时,随着破片直径的减小,破片初速增大,但相邻层数破片的速度差值更小。
Abstract
In order to calculate the initial velocity field of a multi-layer spherical fragment under the explosion drive accurately, based on the Gurney hypothesis and the assumption of equal probability of the force and force between adjacent layer particles a theoretical calculation model of the initial velocity field of the fragment was established by applying momentum and energy conservation.In the calculation model, the difference of the void ratio caused by arrangement was ignored.The model can reflect the influence of explosive density and fragment density, layer number and diameter on the initial velocity of the fragment.The LS-DYNA 3D nonlinear finite element program was used to simulate the explosion driving process of multi-layer tungsten spherical fragments under different conditions.Relevant verification tests were carried out and the reasons for the errors between theoretical and test results were analyzed.The variation of the initial velocity of the tungsten bead fragments under different tungsten bead diameters and different fragmentation layers were discussed.The results show that the theoretical calculations agree well with the numerical and experimental results.As the number of fragments increases, the fragmentation speed will decrease, but the velocity difference between adjacent layers will be larger.As the diameter of the tungsten beads decreases, the fragmentation speed increases, but the difference in velocity between adjacent layers is smaller.
关键词
多层破片 /
爆炸驱动 /
理论计算模型 /
Gurney模型 /
数值模拟
{{custom_keyword}} /
Key words
multilayer fragments /
explosion drive /
theoretical calculation model /
Gurney model /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 隋树元,王树山. 终点效应学[J]. 北京:国防工业出版社. 2000:53-195.
Yu Shuyuan, Wang Shushan. End Effect Effect [J]. Beijing: National Defense Industry Press. 2000:53-195.
[2] 谭多望,曹仁义,王广军. 爆轰驱动对钨珠终点弹道性能的影响[J]. 爆炸与冲击. 2008. 28(6): 481-487.
Tan Duowang, Cao Renyi, Wang Guangjun. Effect of Detonation Drive on Ballistic Performance of Tungsten Beads[J]. Explosion and Shock Waves. 2008. 28(6): 481-487.
[3] Walters WP. Zukas Ja. The Gurney velocity approximation. In: Fundamentals of shapes charges. New York, USA: A Wiley-Interscience Publication, John Wiley & Sons; 1989,ISBN 0-471-62172-2.p.45-71
[4] 凌琦,何勇,何源. 定向战斗部破片飞散的数值模拟与试验研究[J]. 振动与冲击, 2017, 36(3): 234-241.
LING Qi, HE Yong, HE Yuan. Numerical simulation and tests for fragments dispersion of an aimed warhead. Journal of Vibration and Shock, 2017, 36(3): 234-241.
[5] 尹峰,张亚栋,方秦. 常规武器爆炸产生的破片及其破坏效应[J].解放军理工大学学报(自然科学版), 2005, 6(1):50-53.
Yin Feng, Zhang Yadong, Fang Qin. Fragments from the explosion of conventional weapons and their destruction effects[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2005, 6(1): 50-53.
[6] Charron. Y. J. Estimation of velocity distribution of fragmenting warheads using a modified gurney method[D], Canadian: Air Force Institue of Technology, 1979.
[7] 蒋浩征. 杀伤战斗部破片飞散初速V0的计算[J].兵工学报,1980(1):68-79.
Jiang Haozheng. Calculation of the initial velocity V0 of the fragmentation of the killing warhead [J]. Ordnance Engineering Journal, 1980(1): 68-79.
[8] Gordon E. Jones. The Gurney equations for multilayered fragments. [J]. Journal Applied Physics,1979.
[9] Kusumkant D.Dhote, Krothapalli P.S. Murthy. International Journal of Impact Engineering[J]. 2015; 194-202.
[10] 印立魁,蒋建伟. 多层球形预制破片战斗部初速场的计算模型[J].含能材料.2014.22(3):300-305.
Yin Likui, Jiang Jianwei. Calculation model of initial velocity field of multi-layer spherical prefabricated fragment warhead[J]. Energetic Materials. 2014,22(3): 300-305.
[11] 张宝平,张庆明,黄风雷. 爆轰物理学[M]. 北京:兵器工业出版社. 2009.5
Zhang Bao-ping, Zhang Qing-ming, Huang Feng-lei. Beijing: Detonation physics[M]. 2009.5.
[12] 印立魁,蒋建伟. 预制破片战斗部初速场计算公式[OL].[2013-07-30]. 中国科技论文在线.
Yin Likui, Jiang Jianwei. Formula for calculating the initial velocity field of prefabricated fragment warhead [OL]. [2013-07-30]. China Science and Technology Paper Online.
[13] 时党勇,李裕春,张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析. 北京: 清华大学出版社. 2005.
Shi Dang-yong, Li Yu-chun, Zhang Sheng-min. Display dynamic analysis based on ANSYS/LS-DYNA8.1. Beijing: Tsinghua University Press. 2005.
[14] 陈刚,陈忠富,陶俊林,等. 45钢的Johnson-Cook失效模型[C]. 中国力学学会学术大会. 2005.
Chen Gang, Chen Zhong-fu, Tao Jun-lin, et al. Johnson-Cook failure model for 45 Steel [C]. Academic Conference of Chinese Society of Mechanics. 2005.
[15] Murphy M J, Lee E L. Modeling shock initiation in Composition B[C] // 10th international detonation symposium. Los Alamos: Los Alamos National Laboratory, 1993.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}