线谱混沌化是提高潜艇声隐身性能的主要手段,但难以实现小振幅下的持续混沌化;同时,非线性隔振系统由于多个吸引子共存,混沌化品质依赖于初始条件和系统参数。为此,利用开环加非线性闭环方法研究两自由度非线性隔振系统的吸引子迁移和线谱混沌化。建立两自由度非线性隔振系统的动力学方程并分析其全局性态,得到系统的全局分岔特性及吸引子共存规律;通过开环加非线性闭环方法实现不同吸引子之间的迁移控制,使系统在不同初始条件下始终运行于基础振动最小的混沌吸引子上;利用开环加非线性闭环耦合方法实现驱动系统和响应系统之间的广义混沌同步,使系统在不同参数下始终处于小振幅持续混沌运动。仿真结果表明该方法具有可行性和稳定性,能实现隐匿线谱信息和保持隔振性能的双重功能。
Abstract
Line spectra chaotification is the main method to improve the acoustic stealth of submarine, but it is difficult to achieve chaos under the variable working conditions and small amplitudes.At the same time, due to the coexistence of multi-stable attractors in the nonlinear vibration isolation system, the quality of chaos depends on initial conditions and systematic parameters.In this paper, the attractor migration control and the line spectra chaotification of two-degree-of- freedom (2DOF) nonlinear vibration isolation system have been studied by using the open-plus-nonlinear-closed-loop (OPNCL) method.Firstly, the dynamic equation of the 2DOF nonlinear vibration isolation system was established and its exhaustive bifurcation characteristics were analyzed.The regulations of global characteristics and coexistent attractors were obtained.Secondly, the OPNCL control was used to realize the migrations in different attractors, which could ensure that the system always working in the lowest line spectra intensity and the best overall vibration isolation performance.Finally, an OPNCL coupling method was used to achieve generalized chaotic synchronization between the drive system and the response system, which effectively obtained sustainable chaos even under the variable working conditions and small amplitudes.Simulation results show that the feasibility and validity of the OPNCL method, which achieves the dual goals of hiding line spectrum information and maintaining vibration isolation performance.
关键词
开环加非线性闭环(OPNCL) /
非线性隔振系统 /
线谱混沌化 /
吸引子迁移 /
广义混沌同步
{{custom_keyword}} /
Key words
open-plus-nonlinear-closed-loop(OPNCL) /
nonlinear vibration isolation system /
line spectra chaotification /
attractor migration /
generalized chaotic synchronization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱石坚, 姜荣俊, 何琳. 线谱激励的混沌隔振研究[J]. 海军工程大学学报, 2003, 15(1): 19-22.
Zhu Shijian, Jiang Rongjun, He Lin. Research on the chaos vibration-isolation of line spectra excitation[J]. Journal of Naval University of Engineering, 2003, 15(1): 19-22.(in Chinese)
[2] Lou Jingjun, Zhu Shijian, He Lin, et al. Application of chaos method to line spectra reduction[J]. Journal of Sound and Vibration, 2005, 286(3): 645-652.
[3] 楼京俊, 何其伟, 朱石坚. 多频激励软弹簧型Duffing系统中的混沌[J]. 应用数学与力学, 2004, 25(12): 1299-1304.
Lou Jingjun, He Qiwei, Zhu Shijian. Chaos in the softing Duffing system under multi-frequency periodic forces[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1299-1304.(in Chinese)
[4] Lou Jingjun, Zhu Shijian, He Lin, et al. Experimental chaos in nonlinear vibration isolation system[J]. Chaos, Solitons & Fractals, 2009, 40: 1367-1375.
[5] 张敬, 徐道临, 李盈丽, 等. 多源激励下双层隔振系统浮筏系统的线谱混沌化[J]. 物理学报, 2014, 63(18): 18505-1-11.
Zhang Jing, Xu Daolin, Li Yingli, et al. Line spectrum chaotification of a double-layer vibration isolation floating raft system under multi-source excitation[J]. Acta Physica Sinica, 2014, 63(18): 18505-1-11.(in Chinese)
[6] He Qiwei, Zhu Shijian, Lou Jingjun. Study on the computation method of piecewise linear system[J]. Dynamics of Continuous, Discrete and Impulsive System: Series A-Mathematical Analysis, 2006, 13: 1400-1404.
[7] Guilin Wen, Yuanzhi Lu, Zhiyong Zhang, et al. Line spectra reduction and vibration isolation via modified projective synchronization for acoustic stealth of submarines[J]. Journal of Sound and Vibration, 2009, 324: 954-961.
[8] Yu Xiang, Zhu Shijian, Liu Shuyong. Bifurcation and chaos in multi-degree-of-freedom nonlinear vibration isolation system[J]. Chaos, Solitons & Fractals, 2008, 38: 1498-1504.
[9] Liu Shuyong, Yu Xiang, Zhu Shijian. Study on the chaos anti-control technology in nonlinear vibration isolation system[J]. Journal of Sound and Vibration, 2008, 310: 855-864.
[10] 俞翔, 朱石坚, 刘树勇. 广义混沌同步中的多稳定同步流形[J]. 物理学报, 2008, 57(5): 2761-2769.
Yu Xiang, Zhu Shijian, Liu Shuyong. Multi-stable synchronization manifold in generalized synchronization of chaos[J]. Acta Physica Sinica, 2008, 57(5): 2761-2769.(in Chinese)
[11] E Atlee Jackson, I Grosu. An open-plus- closed-loop (OPCL) control of complex dynamic systems[J]. Physica D, 1995, 85(1): 1-9.
[12] Wang Jie, Wang Xiaohong. A global control of polynomial chaotic systems[J]. International Journal of Control, 1999, 72(10): 911-918.
[13] P K Roy, C Hens, I Grosu, et al. Engineering generalized synchronization in chaotic oscillators [J]. Chaos, 2011, 21: 013106-1-7.
[14] Yu Xiang, Zhu Shijian, Liu Shuyong. A new method for line spectra reduction similar to generalized synchronization of chaos[J]. Journal of Sound and Vibration, 2007, 306: 835-848.
[15] J. Yang, Y. P. Xiong, J. T. Xing. Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base[J]. International Journal of Mechanical Sciences, 2016, 115: 238-252.
[16] Zhou Jiaxi, Xu Daolin, Zhang Jing, et al. Spectrum optimization-based chaotification using time-delay feedback control[J]. Chaos, Solitons & Fractals, 2012, 45(6): 815-824.
[17] Jianqiao Sun, Furui Xiong. Cell mapping methods: beyond global analysis of nonlinear dynamic systems[J]. Advances in Mechanics, 2017, 47: 1-27.
[18] Li Yingli, Xu Daolin, Zhou Jiaxi. Chaotification and optimization design of a nonlinear vibration isolation system[J]. Journal of Vibration and Control, 2012, 18(14): 2129-2139.
[19] Zhaoyan Wu, Hui Leng. Complex hybrid projective synchronization of complex variable dynamical networks via open-plus-closed-loop control[J]. Journal of the Franklin Institute, 2017, 354: 689-701.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}