地面颤振模拟试验中加载系统动态特性的影响研究

张桂玮1,谭光辉2,徐钦炜2,谷迎松1,杨智春1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 214-221.

PDF(1746 KB)
PDF(1746 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 214-221.
论文

地面颤振模拟试验中加载系统动态特性的影响研究

  • 张桂玮1,谭光辉2,徐钦炜2,谷迎松1,杨智春1
作者信息 +

A study on the impact of dynamic characteristics of a loading system in ground flutter simulation

  • ZHANG Guiwei1,TAN Guanghui2,XU Qinwei2,GU Yingsong1, YANG Zhichun1
Author information +
文章历史 +

摘要

地面颤振模拟试验是指利用激振器模拟分布的气动力载荷,在地面获得飞行器结构颤振特性的一种半物理仿真试验技术。以全动舵面缩比模型为研究对象,通过对给定数目的传感器和激振器进行位置优化,获得降阶重构的时域非定常气动力模型;考虑激振器加载系统的动态特性,进行了地面颤振模拟数值仿真,并搭建地面颤振模拟试验系统,完成了半物理仿真试验;在试验中,采用H∞鲁棒控制器解决了多个激振器与结构之间的动力学耦合问题。仿真结果表明,当不考虑激振器加载系统的动态特性时,预测得到的模型颤振边界偏保守;考虑激振器加载系统的动态特性后的时域数值仿真结果和半物理仿真试验得到的颤振边界吻合很好,证实了在地面颤振模拟试验中考虑加载系统动态特性的重要性。

Abstract

Ground flutter simulation test is a semi-physical simulation test technique that obtains the flutter characteristics of the aircraft structure on the ground.Exciters are used to simulate the distributed aerodynamic loads on the structure.In this paper, the scale model of an all-moving fin was studied.The time-domain reduced order model of unsteady aerodynamics was obtained by optimizing the positions of a given number of sensors and shakers.Considering the dynamic characteristics of the exciter loading system, the ground flutter simulation and semi-physical simulation tests were carried out.An H-infinity robust controller was used to decouple the interaction between exciters and structure in semi-physical simulation experiments.The results show that the prediction of flutter boundary is underestimated when ignoring the dynamic characteristics of the exciter loading system.The flutter boundary obtained by the simulation agrees well with the semi-physical simulation test results, when taking the dynamic characteristics of the exciter loading system into account.It is indicated that the characteristics of the loading system should be included in ground flutter simulation.

关键词

气动弹性 / 地面颤振模拟 / 加载系统动态特性 / 气动力降阶 / 多激振器力控制

Key words

aeroelasticity / ground flutter simulation / characteristics of the loading system / reduced order model / multi-exciters force control

引用本文

导出引用
张桂玮1,谭光辉2,徐钦炜2,谷迎松1,杨智春1. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击, 2020, 39(16): 214-221
ZHANG Guiwei1,TAN Guanghui2,XU Qinwei2,GU Yingsong1, YANG Zhichun1. A study on the impact of dynamic characteristics of a loading system in ground flutter simulation[J]. Journal of Vibration and Shock, 2020, 39(16): 214-221

参考文献

[1]   KEARNS J P. Flutter simulation: CF-2084[R]. MD, Johns Hopkins Univ. Laurel MD Applied Physics lab, 1962.
[2]  潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, 11(2):10-14.
PAN S X, QI P Q. Studies on ground thermo-flutter simulation test[J]. Structure and Environment Engineering, 1984, 11(2): 10-14(in Chinese).
[3] NARYZHNY A G, PEDORA A P, SMYSLOV V I. Vibration tests with airflow simulation in the aeroelastic investigations on dynamically scaled models[J]. Uchenye Zapiski TsAGI, 2001, 32(1–2): 156-165.
[4]  SMYSLOV V I, DIJKSTRA K, KARKLE P. The experience in ground vibration tests of flexible flying vehicles using prodera equipment and some additional tasks [C]//European Conference for Aerospace Sciences (EU- CASS), 2005.
[5]  LISEYKIN G, BOGATYREV M, PRONIN M, et al. Structural nonlinearities simulation on the flutter electromechanical modeling test bench[C]//29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014.
[6]  LISEYKIN G V, BOGATYREV M M, PRONIN M A et al. Research on dynamic stability of an elastic model using tests in artificial flow[C]//International Forum on Aeroelasticity and Structural Dynamics(IFASD), 2015.
[7]  BYKOV A V, KONDRASHEV G V, PARAFES’ S G, et al. Methods for investigating the unmanned aerial vehicle electric actuator performance in aeroelasticity tasks  [J]. Russian Aeronautics, 2016, 59(3):331-337.
[8]  ZENG J, KINGSBURY D, RITZ E, et al. GVT-based ground flutter test without wind tunnel[C]//52nd AIAA/        ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011: 1942.
[9] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.
     XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinca, 2012, 33(11): 1947-1957(in Chinese).
[10]  WU Z G, CHU L F, YUAN R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9):2482-2488.
[11]  胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, 31(5): 810-815.
HU W, YANG Z C, GU Y S. A new and effective method for reducing order of aerodynamics of a wing with control surface for ground flutter test[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 2013.pp. 810–815(in Chinese).
[12]  SONG Q Z, Yang Z C, Wang W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China Technological Sciences, 20-13, 56(10): 2516- 2524.
[13]  WU Z, MA C, Yang C. New approach to the ground flutter simulation test[J]. Journal of Aircraft, 2016, 53 (5): 1578-1580.
[14]  WU Z, ZHANG R, MA C, et al. Aeroelastic semi-physical simulation and wind-tunnel testing validation of a fin-actuator system[J]. Journal of Aircraft, 2017, 54(1): 235-245.
[15]   邓智, 宋汉文. 基于反馈控制的桥梁节段模型干风洞实验仿真[J]. 振动与冲击, 2017, 36(5):120-126.
DENG Zhi, SONG Hanwen. Simulation for a bridge section model’s wind tunnel test based on feedback control[J]. Journal of Vibration and Shock, 2017, 36 (5):120-126 (in Chinese).
[16]   RODDEM W P, GIESTING J P, KALMAN T P. Refinement of the nonplanar aspects of the subsonic doublet-lattice lifting surface method[J]. Journal of Aircraft, 1972, 9(1): 69-73.
[17]   CHEN P C, LEE H W, LIU D D. Unsteady subsonic aerodynamics for bodies and wings with external stores including wake effort. Journal of Aircraft, 1993, 30(5): 618-628.
[18]  CHEN P C, LIU D D. Unsteady supersonic computation of arbitrary wing-body configurations including External Stores. Journal of Aircraft, 1990, 27(2): 108-
116.
[19] KARPEL M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal, 2012, 29 (11):2007-2009.
[20]  VAES D, SWEVERS J, SAS P. Experimental validation of different MIMO-feedback controller design methods[J]. Control Engineering Practice, 2005, 13(11): 1439-1451.
[21]  SAFONOV M G, CHIAN R Y. Model reduction for robust control: A Schur relative-error method[J]. International Journal of Adaptive Control and Signal Processing,1988, 2(4):259-272.

PDF(1746 KB)

Accesses

Citation

Detail

段落导航
相关文章

/