摘要
以机器人行走过程中双腿运动特征为基础,设计构建参数激励下均质杆状双摆运动模型。采用拉格朗日方法建立系统的运动微分方程,并对其进行无量纲化处理;针对系统两固有频率比为1∶3状态进行非线性动力学分析,通过理论推导计算得出双摆长度比和质量比关系曲线,根据杆长比即可确定两杆质量比,在此基础上,将微分方程线性化解耦为两个马修方程。采用林滋泰德—庞加莱摄动法(L-P)确定系统稳定区间,经Matlab数值模拟验证了结果的正确性。
Abstract
Based on the motion of both legs in the walking process of a robot, a homogeneous rod-shaped pendulum motion model under parametric was designed.The motion differential equation of the system was established by the Lagrange method, and its dimensionless treatment was carried out.Nonlinear dynamic analysis of the system with two natural frequencies ratio of 1∶3, the relationship curve between length ratio and mass ratio of double pendulum was obtained by theoretical deduction, the mass ratio of two rods could be determined according to the length ratio.On this basis, the differential equation was linearized and decoupled into two Mathieu equations.Finally, the stability interval of the system was determined by the Lindstede-Poincare perturbation method (L-P), and the correctness of the results was verified by numerical simulation with Matlab.
关键词
双摆;拉格朗日方法;解耦;林滋泰德&mdash /
庞加莱摄动法
{{custom_keyword}} /
Key words
double pendulum /
Lagrange /
decoupled /
Lindstede-Poincare perturbation method(L-P)
{{custom_keyword}} /
张红巧1,田瑞兰2,陈恩利1,2,郭秀英2.
参数激励下均质杆状双摆的周期稳定振动[J]. 振动与冲击, 2020, 39(16): 231-235
ZHANG Hongqiao1, TIAN Ruilan2, CHEN Enli1,2, GUO Xiuying2.
Periodically stable vibration of homogeneous rod-shaped double pendulum under parametric excitation[J]. Journal of Vibration and Shock, 2020, 39(16): 231-235
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 江锦,李浩. 平面双摆振动特性研究[J]. 中国造船,2010(a2):66-72.
JIANG Jin,LI Hao. Analysis of Pendulum Oscillation[J]. Ship Building of China.2010(a2):66-72.
[2] Soumyabrata Maiti,Jyotirmoy Roy,Asok K. Mallik,Jayanta K. Bhattacharjee. Nonlinear dynamics of a rotating double pendulum[J]. Physics Letters A,2016,380(3):408-412.
[3] Stachowiak,Tomasz,Okada,Toshio. A numerical analysis of chaos in the double pendulum[J]. Chaos,Solitons and Fractals. 2006,29(2):417-422.
[4] Mukul K. Gupta,Kamal Bansal,Arun K. Singh. Mass and Length Dependent Chaotic Behavior of a Double Pendulum[J]. IFAC Proceedings Volumes,2014,47(1):297-301.
[5] 杨晓松,李清都,唐云. 双摆系统的拓扑马蹄与混沌[J]. 力学季刊,2009,30(1):149-153.
Yang Xiao-song,Li Qing-du,TanG Yun. Topologica Horseshoe and Chaos in a Double Pendulum System[J]. Chinese Quarterly of Mechanics. 2009,30(1):149-153.
[6] 李戈,时志高,谢奇之,刘江河,卜振翔. 基于Mathematica对保守双摆的研究[J]. 南昌航空大学学报(自然科学版),2016,30(3):40-43+71.
LI Ge,SHI Zhi-gao,XIE Qi-zhi,LIU Jiang-he,BU Zhen-xiang. The Research of the Conservative Double Pendulum by using Mathematica[J]. Journal of Nanchang Institute of Aeronautical Technology (Natural Science Edition). 2016,30(3):40-43+71.
[7] 张伯俊,王谦,黄东卫. 用Lyapunov指数分析物理双摆的混沌特征[J]. 天津工业大学学报,2014,33(2):85-88.
ZHANG Bo-jun,WANG Qian,HUANG Dong-Wei. Analyzing on chaotic properties of double-body pendulum by Lyapunov exponents[J]. Journal of Tianjin Polytechnic University,2014, 33(2):85-88.
[8] 康慨,徐鉴. 两自由度参数激励摆旋转运动分析和实验[J]. 力学季刊,2015,36(2):189-204.
Kang K,Jian X U. Analysis and Experiment for the Rotation Movement of a Two Degrees of Freedom Pendulum Subjected to Parametric Excitation[J]. Chinese Quarterly of Mechanics,2015,36(02):189-204.
[9] 朱晓东,金永磊. 参数激励双摆的建模与动力学分析[J]. 苏州大学学报(工科版),2007,(03):47-51.
Zhu Xiao-dong,Jin Yong-lei. Modeling of Parametrically Excited Double Pendulum and Dynamical Analysis[J]. Journal of Soochow University(Engineering Science Edition),2007,(03),47-51.
[10] 王振华,王本利. 自由运动双摆的周期性及其解析 .吉首大学学报,2007,28(1):63-69.
WANG Zhen-hua,WANG Ben-li. Periodic Motion and Analytic Solution for a Free Double Pendulum. Journal of Jishou University,2007,28(1):63-69.
[11] Dony Hidayat Al-Janan,Hao-Chin Chang,Yeh-Peng Chen,Tung-Kuan Liu. Optimizing the Double Inverted Pendulum’s Performance via the Uniform Neuro Multiobjective Genetic Algorithm[J]. International Journal of Automation and Computing,2017,(6):686-695.
[12] Cao Q J,Han N,Tian R L. A rotating pendulum linked by an oblique spring[J]. Chinese Physics Letters,2011, 28(6):060502.
[13] Ekaterina Pavlovskaia,Marian Wiercigroch,Stefano Lenci,Giuseppe Rega,Bryan Horton. Approximate rotational solutions of pendulum under combined vertical and horizontal excitation[J]. International Journal of Bifurcation and Chaos,2012,22(5):1250100.
[14] Aline S. De Paula,Marcelo A. Savi,Marian Wiercigroch, Ekaterina Pavlovskaia. Bifurcation control of a parametric pendulum[J]. International Journal of Bifurcation and Chaos,2012,22(5):1250111.
[15] V. Vaziri,A. Najdecka,M. Wiercigrocha. Experimental control for initiating and maintaining rotation of parametric pendulum[J]. The European Physical Journal Special Topics,2014,223(4):795-812.
[16] 丁虎,陈立群. 轴向运动梁参数激励振动稳定性研究进展[J].上海大学学报(自然科学版),2011,17(04):471-479.
Hu D,Liqun C. Advances in Parametric Instability of Axially Moving Beams[J]. Journal of Shanghai University,2011,17(4):471-479.
[17] Stoker J J. Nonlinear vibrations in mechanical and electrical systems. New York:Interscience Publishers,1950.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}