黏弹性阻尼器是一种被动减震(振)控制装置,它主要依靠黏弹性阻尼材料的滞回耗能特性,给结构提供附加刚度和阻尼,以减小结构的震(振)动反应。在减震结构设计中,一定范围内提高黏弹性阻尼器的存储刚度,能够有效的降低结构的震(振)动位移,提升黏弹性阻尼器的减震性能;通过在既有黏弹性阻尼材料中增加芳纶网眼织物,设计并制作了五类黏弹性叠层复合材料阻尼器,在相同环境温度下,对其进行变形相关性、加载频率相关性以及疲劳性能试验,以最大剪应力、存储剪切模量、损耗剪切模量和等效黏滞阻尼比作为性能指标,研究黏弹性叠层复合材料阻尼器的力学性能及其规律。研究结果表明:在不改变黏弹性阻尼材料基体的基础上,增加芳纶网眼骨架材料,能够有效的提高黏弹性阻尼器的存储刚度;剪切变形、疲劳加载对黏弹性叠层复合材料阻尼器力学性能指标影响明显;加载频率对该类黏弹性阻尼器的力学指标影响较小。
Abstract
A viscoelastic damper is a passive damping control device, which mainly relies on the hysteretic energy dissipation characteristics of viscoelastic material to provide additional stiffness and damping to the structure to reduce the seismic dynamic response of the structure.In the passive control structure design, the storage stiffness of the viscoelastic damper is improved within a certain range, which can effectively reduce the seismic dynamic response of the structure and improve the passive control performance of the viscoelastic damper.This paper presents an experimental study on five types of viscoelastic laminated composite dampers fabricated by adding aramid mesh skeleton material to viscoelastic modified natural rubber.The maximum shear stress, storage shear modulus, loss shear modulus, and equivalent viscous damping ration were measured under different loading schemes to study the regularity of the viscoelastic laminated composite damper properties.The influence of the strain amplitudes, loading frequency, and fatigue to the mechanical properties of these viscoelastic laminated composite dampers were studied.The conclusion is that without changing the matrix of viscoelastic damping material, the storage stiffness of damper can be improved with adding aramid mesh skeleton material in it.Shear strain and fatigue have more effect on the mechanical properties of the viscoelastic laminated composite dampers than loading frequency.
关键词
黏弹性阻尼器 /
叠层复合材料 /
力学性能 /
存储刚度 /
等效黏滞阻尼比
{{custom_keyword}} /
Key words
viscoelastic damper /
laminated composite /
mechanical property /
storage stiffness /
equivalent viscous damping ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周云. 粘弹性阻尼减震结构设计理论及应用[M]. 武汉:武汉理工大学出版社,2013.
[2] 常冠军. 黏弹性阻尼材料[M]. 北京:国防工业出版社,2012.
[3] 社团法人,日本隔震结构协会编. 被动减震结构设计•施工手册[M]. 蒋通译. 北京:中国建筑工业出版社,2008.
[4] Hajela P. Shihi C J. Optimum Synthesis of Polymer Matrix Composites for improved internal Material damping Characteristics[J]. AIAA Journal, 1988,26(4):504-506.
[5] Shankar K, Lakkad S C. Damping in fiber reinforced Plastics[J]. Journal of materials science letter1, 1982,1(2):53-57.
[6] Biggerstaff J M, Kosmatka J B. Damping performance of cocured graphite/epoxy composite laminates with embedded damping materials[J]. Journal of composite materials, 1999,33(15):1457-1469.
[7] Parhizgar S. Determination of stiffness properties of mulit-ply cord-rubber composites[J].Tire Science and Technology, 1998, 17(3):204-216
[8] 李鑫陵. 芳纶1313织物及其增强硅橡胶复合材料的性能研究[D]. 杭州:浙江理工大学,2011.
[9] 周云,徐赵东,邓雪松. 粘弹性阻尼器的性能试验研究[J]. 振动与冲击,2001,20(3): 71-75.
Zhou Yun, Xu Zhaodong, Deng Xuesong. Experimental study on properties of viscoelastic dampers[J]. Journal of vibration and shock, 2001, 20(3):71-75.
[10] 赵刚,潘鹏,钱稼茹,等. 黏弹性阻尼器大变形性能试验研究[J]. 建筑结构学报,2012,33(10): 126-133.
Zhao Gang, Pan Peng, Qian Jiaru, et al. Experimental study of viscoelastic dampers subjected to large deformation[J]. Journal of building structure, 2012, 33(10): 126-133.
[11] 欧进萍,邹向阳. 粘弹性耗能器的性能实验研究[J]. 振动与冲击,1999,18(3): 12-18.
Ou Jinping, Zou Xiangyan. Experimental study on properties of viscoelastic damper[J]. Journal of Vibration and Shock, 1999, 18(3): 12-18.
[12] 周云,松本逹治,田中和宏,等. 新型高阻尼黏弹性阻尼器性能试验研究[J]. 工程力学,2016,33(7): 92-99.
Zhou Yun, Matsumoto Tatsuji, Tanaka kazuhiro, et al. Research on experimental properties of novel high damping viscoelastic dampers[J]. Engineering mechanics, 2016, 33(7): 92-99.
[13] 周云,松本逹治,田中和宏,等. 高阻尼黏弹性阻尼器性能与力学模型研究[J]. 振动与冲击,2015,34(7): 1-7.
Zhou Yun, Matsumoto Tatsuji, Tanaka kazuhiro, et al. Performance and mechanical model of high damping viscoelastic dmpers[J]. Journal of vibration and shock, 2015, 34(7): 1-7.
[14] S. Cantournet, R. Desmorat, J. Besson. Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model[J]. International Journal of Solids and Structures, 2009, 46(2009): 2255-2264.
[15] JG/T 209-2012. 建筑消能阻尼器[S]. 北京:中国标准出版社,2012.
[16] JGJ297-2013. 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社,2013.
[17] Mullins L. Softening of rubber by deformation[J]. Rubber Chemistry and Technology, 1969, 42(1): 339-362.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}