典型边界条件下加筋矩形板的横向振动特性分析

李国荣,王磊,胡朝斌,周叮

振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 261-266.

PDF(1172 KB)
PDF(1172 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 261-266.
论文

典型边界条件下加筋矩形板的横向振动特性分析

  • 李国荣,王磊,胡朝斌,周叮
作者信息 +

Analysis of transverse vibration characteristics for stiffened rectangular plates with classical boundary conditions

  • LI Guorong,WANG Lei, HU Chaobin, ZHOU Ding
Author information +
文章历史 +

摘要

采用能量法研究典型边界条件下加筋矩形板的横向振动特性。将矩形板、加强筋沿交界面切开,分别采用薄板弯曲理论和欧拉梁理论建立其横向振动的总能量方程,利用第一类切比雪夫多项式构造矩形板的位移试函数,由Rayleigh-Ritz法得加筋矩形板的横向振动特征方程。数值计算结果表明,该方法收敛性好,与有限元软件ANSYS和已有文献的对比显示了高精度,并可以得到任意阶次的固有频率,具有计算简单的特点;最后分析了加强筋位置和加强筋高度对加筋方板无量纲自振频率的影响。

Abstract

The transverse vibration characteristics of stiffened rectangular plates with classical boundary conditions were studied using the energy method.The stiffened rectangular plate was divided into two parts along the interface of the plate and stiffeners.The total energy equation for the transverse vibration of the stiffened plate was established based on the flexural theory for the thin plate and the Euler beam theory for the stiffeners.The first kind of Chebyshev polynomials was used to construct the displacement functions for the stiffened rectangular plate.The eigenvalue equations of the stiffened rectangular plate were derived by using the Rayleigh-Ritz method.Numerical results indicated good convergence of the present method.High accuracy was demonstrated by comparing with the available results in literature and those from the finite element software ANSYS.Any number of frequencies can be obtained with simple calculation.The effects of the position and height of the stiffener on the non-dimensional natural frequency of the stiffened square plates were studied.

关键词

加筋板 / 横向振动 / 切比雪夫多项式 / Rayleigh-Ritz法

Key words

stiffened plates / transverse vibration / Chebyshev polynomials / Rayleigh-Ritz method

引用本文

导出引用
李国荣,王磊,胡朝斌,周叮. 典型边界条件下加筋矩形板的横向振动特性分析[J]. 振动与冲击, 2020, 39(16): 261-266
LI Guorong,WANG Lei, HU Chaobin, ZHOU Ding. Analysis of transverse vibration characteristics for stiffened rectangular plates with classical boundary conditions[J]. Journal of Vibration and Shock, 2020, 39(16): 261-266

参考文献

[1] 渠晶, 赵宝成. 加劲板连接双层钢板混凝土剪力墙抗剪承载能力分析[J]. 苏州科技学院学报(工程技术版). 2013, 26(3): 51-55.
QU Jing, ZHAO Baocheng. The analysis on the shear carrying capacity of the bi-steel-plate concrete shear wall connected by stiffened plates[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology). 2013, 26(3): 51-55.
[2] 马牛静, 王荣辉, 韩强, 等. 四边简支加劲板的几何非线性自由振动及内共振[J]. 振动与冲击. 2012, 31(24): 60-64.
MA Niujing, WANG Ronghui, HAN Qiang, et al. Geometrically nonlinear free vibration and internal resonance of a stiffened plate with four edges simply supported[J]. Journal of vibration and shock. 2012, 31(24): 60-64.
[3] 刘文光, 郭隆清, 付俊, 等. 加筋薄板的自由振动分析[J]. 机械设计与制造. 2017(2): 58-61.
LIU Wenguang, GUO Longqing, FU Jun, et al. Free vibration analysis of stiffened thin plate[J]. Machinery Design & Manufacture. 2017(2): 58-61.
[4] 李守娟, 徐伟. 附加集中质量加筋板的振动分析[J]. 南通职业大学学报. 2017, 31(1): 83-86.
LI Shoujuan, XU Wei. Vibration analysis on stiffened plates with additional concentrated mass[J]. Journal of nantong vocational university. 2017, 31(1): 83-86.
[5] CHO D S, KIM B H, KIM J. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method[J]. Thin-Walled Structures. 2015, 90: 182-190.
[6] MITRA A, SAHOO P, SAHA K. Nonlinear vibration analysis of simply supported stiffened plate by a variational method[J]. Mechanics of Advanced Materials and Structures. 2013, 20(5): 373-396.
[7] RAO S R, SHEIKH A H, MUKHOPADHYAY M. Large-amplitude finite element flexural vibration of plates/stiffened plates[J]. Journal of the Acoustical Society of America. 1998, 93(6): 3250-3257.
[8] BARRETTE M, BERRY A, BESLIN O. Vibration of stiffened plates using hierarchical trigonometric functions[J]. Journal of Sound and Vibration. 2000, 235(5): 727-747.
[9] WUTZOW W W, PAIVA J B D. Analysis of stiffened plates by the boundary element method[J]. Engineering Analysis with Boundary Elements. 2008, 32(1): 1-10.
[10] 杜菲, 马天兵, 钱星光, 等. 基于Rayleigh-Ritz法的四边固支加筋板振动研究[J]. 科学技术与工程. 2017, 17(11): 137-142.
DU Fei, MA Tianbing, QIAN Xingguang, et al. Vibration research of stiffened plate with four edges clamped based on Rayleigh-Ritz method[J]. Science Technology and Engineering. 2017, 17(11): 137-142.
[11] GORDO J M, SOARES C G. Compressive tests on stiffened panels of intermediate slenderness[J]. Thin-Walled Structures. 2011, 49(6): 782-794.
[12] 石楚千, 曾建江, 朱书华, 等. 不同筋条刚度下复材加筋板剪切稳定性分析[J]. 航空计算技术. 2014, 44(1): 94-97.
SHI Chuqian, ZENG Jianjiang, ZHU Shu-hua, et al. Analysis of stability on composite stiffened panels subjected to shear loading under different stiffness conditions[J]. Aeronautical Computing Technique. 2014, 44(1): 94-97.
[13] LI Z, MA N J, CHEN M. Transverse vibration analysis of stiffened plates with elastic support[J]. Materials Science and Engineering. 2017, 248: 12-21.
[14] ZHOU D. Three-dimensional vibration analysis of structural elements using Chebyshev-Ritz method[M]. Beijing: Science press, 2007.
[15] DURVASULA S. On vibration of eccentrically stiffened plates having varying stiffener length[J]. Journal of Sound and Vibration. 1985, 99(4): 568-571.
[16] OU D, MAK C. Free flexural vibration analysis of stiffened plates with general elastic boundary supports[J]. World Journal of Modelling and Simulation. 2012, 8(2): 96-102.
[17] MUKHERJEE A, MUKHOPADHYAY M. Finite element free vibration of eccentrically stiffened plates[J]. Computers & Structures. 1988, 30(6): 1303-1317.
[18] QING G, QIU J, LIU Y. Free vibration analysis of stiffened laminated plates[J]. International Journal of Solids and Structures. 2006, 43(6): 1357-1371.

PDF(1172 KB)

636

Accesses

0

Citation

Detail

段落导航
相关文章

/