The major ampullate silk possess excellent mechanical properties and its β-sheet nanocrystalline plays an crucial role inmicro-scale. Inspired by its structure, a new type of honeycomb topology is abstracted. Through simulation and theoretical analysis, it is found that the β-sheet nanocrystalline inspired honeycomb has abundant and unique deformation modes. At high impact velocity, this new honeycomb has zero Poisson's ratio due to re-entrant angel’s inward depression and hypotenuse’s bend. At low impact velocity , the deformation mechanism is cell’s overall rotation and tensile deformation. Because of this deformation mechanism, there are two plateau stress periods in response curve. Furthermore, the deformation mode map of the structure is given, and the plateau stress formula is obtained. According to the stress characteristics, the plateau stress formula of cellular honeycomb structure under rotating deformation mechanism is proposed. The energy absorption capacity of this honeycomb is approximate to hexagonal honeycomb. It can provide a choice for protection occasions against transverse deformation.
FANG Zechen,FENG Jie,CHEN Chuanlin,LI Zhongxin,WU Zhilin.
Dynamic behavior of spider β-sheet nanocrystalline inspired honeycomb structures[J]. Journal of Vibration and Shock, 2020, 39(16): 46-54
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Nova A, Keten S, Pugno N, et al. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils[J]. Nano Letters, 2010, 10(7):2626-2634.
[2] Sirichaisit J, Young R J, Vollrath F. Molecular deformation in spider dragline silk subjected to stress[J]. Polymer, 2000, 41(3):1223-1227.
[3] Lefèvre T, Rousseau M E, Pézolet M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.[J]. Biophysical Journal, 2007, 92(8):2885-2895.
[4] van Beek J D, Hess S, Vollrath F, et al. The molecular structure of spider dragline silk: folding and orientation of the protein backbone.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16):10266-71.
[5] Thiel B L, Guess K B, Viney C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk[J]. Biopolymers, 1997, 41(7):703-719.
[6] Hayashi C Y, Shipley N H, Lewis R V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.[J]. International Journal of Biological Macromolecules, 1999, 24(2–3):271-275.
[7] Termonia Y. Molecular Modeling of Spider Silk Elasticity[J]. Macromolecules, 1994, 27(25):7378-7381.
[8] Thiel B L, Viney C, Jelinski L W. β Sheets and Spider Silk[J]. Science, 1996, 273(5281):1480-1481.
[9] Huang X, Liu G, Wang X. New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching[J]. Advanced Materials, 2012, 24(11):1482-6.
[10] J. Kümmerlen, J.van Beek, F. Vollrath A, et al. Local Structure in Spider Dragline Silk Investigated by Two-Dimensional Spin-Diffusion Nuclear Magnetic Resonance[J]. Macromolecules, 1996, 29(8):2920-2928.
[11] Keten S, Buehler M J. Asymptotic Strength Limit of Hydrogen Bond Assemblies in Proteins at Vanishing Pulling Rates[J]. Physical Review Letters, 2009, 102(12):198301
[12] Du N, Liu X Y, Narayanan J, et al. Design of Superior Spider Silk: From Nanostructure to Mechanical Properties[J]. Biophysical Journal, 2006, 91(12): 4528-4535.
[13] Keten S, Xu Z, Ihle B, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk[J]. Nature materials, 2010, 9: 359-367.
[14] Ruan D, Lu G, Wang B. et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182.
[15] Zou Z , Reid S R , Tan P J , et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176.
[16] Papka S D , Kyriakides S . Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb[J]. Acta Materialia, 1998, 46(8):2765-2776.
[17] Hu L, Yu T. Dynamic crushing strength of hexagonal honeycombs[J]. International Journal of Impact Engineering, 2010, 37(5):467-474.
[18] 余同希, 胡玲玲. 惯性效应对蜂窝能量吸收性能的影响[J]. 兵工学报, 2009(S2):24-27.
Yu T, Hu L. Influence of Inertia Effect on the Energy Absorption of Hexagonal Honeycombs. ACTA ARMAMENTARII[J], 2009(S2):24-27.
[19] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5):475-482.
Zhang X, Liu Y, Li N. In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects[J]. Explosin and Shock Waves. , 2012, 32(5):475-482.
[20] 崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5):919-924.
Cui S, Wang B, Zhang K. Mechanical behavior and energy absorption of honeycomb with negative Poisson's ratio under in-plane dynamic compression[J]. Chinese Journal of Applied Mechanics, 2017, 34(5):919-924.
[21] 李康, 卢子兴. 负泊松比蜂窝动态压溃行为的数值模拟[C]. 海峡两岸航空航天学术研讨会. 2012.
Li K, Lu Z. Dynamic crushing of honeycombs with a negative Poisson’S ratio—a finite element study[c]. The 8th Cross-straits Confel'ence on Aeronautics and Astronautics. 2012
[22] 卢剑锋. 冲击载荷作用下材料与结构力学行为有限元模拟[D]. 清华大学, 2003.
Lu J. Finite Element Simulation on Mechanical Behavior of Materials and Structures Subjected to Impact Loading[D]. Tsinghua University,2003
[23] 卢子兴 , 武文博 . 基于旋转三角形模型的负泊松比蜂窝材料面内动态压溃行为数值模拟[J]. 兵工学报, 2018, 39(1):153-160
LU Z, WU W . Numerical Simulations for the In-plane Dynamic Crushing of Honeycomb Material with Negative Poisson's Ratio Based on Rotating Triangle Model[J]. Acta Armamentarii, 2018, 39(1):153-160
[24] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1):13103-013103.
HAN H, ZHANG X, WANG P. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio (NPR) [J]. Explosion and Shock Waves, 2019, 39(1):13103-013103.
[25] Li Z , Wang T , Jiang Y , et al. Design-oriented Crushing Analysis of Hexagonal Honeycomb Core under In-plane Compression[J]. Composite Structures, 2017:S0263822317321530.
[26] Qiu X, Zhang J, Yu T. Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation [J]. International Journal of Impact Engineering, 2009, 36(10): 1231-1241.
[27] Qiao J, Chen C. In-plane crushing of a hierarchical honeycomb[J]. International Journal of Solids & Structures, 2012, s 85–86:57-66.