PI controllers are easy to use, adaptable and robust. Therefore, they are widely used in inverters with uncertain loads. However, H-bridge inverters are strong nonlinear systems and necessarily exhibit typical complex dynamic behavior. This paper takes PI-control H-bridge inverter as the research object. Firstly, the stroboscopic mapping theory is used to establish the discrete mathematical model of the inverter. Secondly, when the integral adjustment factor is fixed, a bifurcation diagram with the proportional adjustment factor as the bifurcation parameter is obtained, and verified by iterative and time domain diagrams. When the proportional adjustment factor is fixed, a bifurcation diagram with the integral adjustment factor as the bifurcation parameter is obtained, and verified by a stroboscopic graph and a spectrum graph. Thirdly, the stability of the system is analyzed by using the fast-changing stability theorem, which further verifies the consistency between simulation and theoretical analysis. Finally, research shows that external parameters such as input voltage , load inductance , and resistance also have important effects on system stability. Therefore, this research has certain theoretical significance and practical engineering value for deep understanding the work stability of the H-bridge inverters system based on PI control and it can provide a strong theoretical guarantee for the design of this system.
JIANG Wei,WU Ronghua.
A study on working stability of H-bridge inverter based on PI control[J]. Journal of Vibration and Shock, 2020, 39(16): 62-68
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Robert B, Robert C. Border collision bifurcations in a one-dimensional piecewise smooth map for a PWM current-programmed H-bridge inverter[J]. International Journal of Control. 2002, 75(16-17):1356-1367.
[2] 王学梅,张波,丘东元.H桥正弦逆变器的快变和慢变稳定性及混沌行为研究[J]. 物理学报, 2009, 58(4): 2248-2254.
Wang Xuemei, Zhang Bo, Qiu Dongyuan. Fast and slow stability and chaotic behavior of H-bridge sinusoidal inverters[J]. Acta Phys. Sin., 2009, 58(4): 2248-2254.
[3] 雷博, 肖国春, 吴旋律, 等. 单相全桥DC-AC电压逆变电路数字控制中的振荡现象分析[J], 物理学报, 2011, 60(9): 122-132.
Lei Bo, Xiao Guochun, Wu Xuanlu, et al. Analysis of oscillation phenomena in digital control of single-phase full-bridge DC-AC voltage inverter circuit[J], Acta Physica Sinica, 2011, 60(9): 122-132.
[4] 郭珂, 周林, 龙崦平. H桥变换器中分岔与混沌现象的研究进展与趋势[J]. 重庆大学学报, 2013, 36(07): 52-60.
Guo Wei, Zhou Lin, Long Yuping. Research Progress and Trend of Bifurcation and Chaos in H-Bridge Converters[J]. Journal of Chongqing University, 2013, 36(07): 52-60.
[5] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究[J]. 物理学报, 2013, 62(11): 98-105.
Liu H C, Li F, Yang S. Research on nonlinear phenomena of single-phase H-bridge inverter based on periodic spread spectrum[J]. Acta Phys. Sinica, 2013, 62(11): 98-105.
[6] 施烨, 吴在军, 窦晓波, 等. 三相全桥逆变器分岔特性研究[J]. 中国电机工程学报, 2016, 36(19): 5334-5349+5416.
Shi Wei, Wu Zaijun, Dou Xiaobo, et al. Study on Bifurcation Characteristics of Three-Phase Full-Bridge Inverter[J]. Proceedings of the CSEE, 2016, 36(19): 5334-5349+5416.
[7] 吴荣华, 江伟. SPWM-H桥逆变器的非线性动力学行为研究[J]. 内蒙古大学学报(自然科学版), 2018, 49(06): 657-666.
Wu R H, Jiang W. Research on Nonlinear Dynamic Behavior of SPWM-H Bridge Inverter[J]. Journal of Inner Mongolia University, 2018, 49(06): 657-666.
[8] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究[J]. 物理学报, 2013, 62(11): 98-105.
Liu Hongchen, Li Fei, Yang Shuang. Research on nonlinear phenomena of single-phase H-bridge inverter based on periodic spread spectrum[J]. Acta Phys. Sinica, 2013, 62(11): 98-105.
[9] 陶彩霞,陈庆花,田莉, 等. 准PR调节下三相并网逆变器的分岔现象分析[J]. 电力系统保护与控制,2018,46(12):100- 107.
Tao Caixia, Chen Qinghua, Tian Li, et al. Analysis of bifurcation phenomenon of three-phase grid-connected inverter under quasi-PR regulation[J]. Power System Protection and Control, 2018, 46(12): 100-107.
[10] 赵志成,方力先.基于混沌理论的音乐信号非线性特征研究[J].振动与冲击,2019,38 (3) : 39-43.
ZHAO Zhicheng,FANG Lixian.Nonlinear characteristics of music signals based on chaos theory[J]. Journal of Vibration and Shock,2019,38(3) : 39-43
[11] 徐昌彪,钟德,夏诚,等.一个新的超大范围混沌系统及其自适应滑模控制[J].振动与冲击,2019,38 (3) : 125-130.
XU Changbiao ,ZHONG De,XIA Cheng,et al.A new chaotic system with parameter b in a super-large range and its adaptive sliding mode control [J]. Journal of Vibration and Shock,2019,38(3) : 125-130.
[12] 代璐, 龙崦平. PI调节下光伏逆变器的分岔与混沌现象研究[J].电力系统保护与控制,2012,40(24):89-94.
Dai L, Long Y P. Research on Bifurcation and Chaos of PV Inverter under PI Regulation[J]. Power System Protection and Control, 2012, 40(24): 89-94.
[13] 郝翔, 谢瑞良, 杨旭, 等. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究[J]. 物理学报, 2013, 62(20): 1-15.
Hao Xiang, Xie Ruiliang, Yang Xu, et al. Bifurcation and chaotic behavior of first-order H-bridge inverter based on sliding-mode variable structure control with pulse width modulation[J]. Acta Phys. Sinica, 2013, 62(20 ): 1-15.
[14] 代云中,任海军,林春旭,吴显松. 滑模变结构控制H6结构逆变器的非线性行为和稳定域[J]. 高电压技术,2017,43(04):1152-1159.
Dai Yunzhong, Ren Haijun, Lin Chunxu, Wu Xiansong. Sliding mode variable structure control nonlinear behavior and stability domain of H6 structure inverter[J]. High Voltage Engineering, 2017, 43(04): 1152-1159.