薄壁机匣发动机轴承位置不平衡响应矢量逆推方法

冯坤1,2,朱振桥3,左彦飞3,王辰3,胡明辉1,2,耿斌斌1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 89-95.

PDF(1244 KB)
PDF(1244 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 89-95.
论文

薄壁机匣发动机轴承位置不平衡响应矢量逆推方法

  • 冯坤1,2,朱振桥3,左彦飞3,王辰3,胡明辉1,2,耿斌斌1
作者信息 +

A reverse method of unbalance response at bearing position of thin-walled casing engines

  • FENG Kun1,2,ZHU Zhenqiao3,ZUO Yanfei3,WANG Chen3,HU Minghui1,2,GENG Binbin1
Author information +
文章历史 +

摘要

整机动平衡相较传统工艺动平衡可大幅提高整机不平衡振动控制效率;由于发动机振动测点位于薄壁机匣支承结构表面,无法直接测得轴承位置的不平衡响应矢量,使整机动平衡难度增大。为此,提出一种基于机匣外部测振信号的轴承位置不平衡响应矢量逆推方法;虑及薄壁机匣支承结构动力特性的影响,通过仿真分析结合试验获得测点振动响应与轴承位置不平衡激励之间的影响函数矩阵;利用该函数矩阵及机匣外部振动测点实测响应逆推轴承位置不平衡响应矢量。通过对典型双转子发动机高保真机匣系统的数值仿真分析,验证了该方法的有效性;对于实现发动机转子不平衡矢量逆推以及整机振动控制具有工程应用价值。

Abstract

The efficiency of controlling unbalance vibration of gas turbines can be greatly improved by overall maneuver balance compared with the traditional process.However, since the measuring points of vibration can be only located on the surface of the thin-walled casing structure, the unbalance response of the bearing position cannot be directly measured, which makes the overall maneuver balance more difficult.Therefore, an inverse method for calculating unbalance response vector of bearing position based on external vibration signal of casing was proposed in this paper.Considering the influence of the dynamic characteristics of the thin-walled support structure, the influence function matrix between the vibration response of the measuring points and the unbalance excitations of the bearing position was obtained through numerical simulation combined with tests.The unbalance response vector of the bearing position was inversely calculated by using the function matrix and the vibration of the casing measurement point.The method was validated by numerical simulation results of a high-fidelity thin-walled casing model of a typical double-rotor engine.This method has certain application value for reversely calculating rotor imbalance vector and vibration control of engines.

关键词

薄壁机匣 / 不平衡响应矢量 / 逆推 / 数值仿真

Key words

thin-walled casing / unbalance response vector / reverse calculation / numerical simulation

引用本文

导出引用
冯坤1,2,朱振桥3,左彦飞3,王辰3,胡明辉1,2,耿斌斌1. 薄壁机匣发动机轴承位置不平衡响应矢量逆推方法[J]. 振动与冲击, 2020, 39(16): 89-95
FENG Kun1,2,ZHU Zhenqiao3,ZUO Yanfei3,WANG Chen3,HU Minghui1,2,GENG Binbin1. A reverse method of unbalance response at bearing position of thin-walled casing engines[J]. Journal of Vibration and Shock, 2020, 39(16): 89-95

参考文献

[1] 温登哲,陈予恕.机动飞行时航空发动机的双转子动力学研究综述[C]// 第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议论文集. 2011:1-6.
WEN Dengzhe, CHEN Yu-shu. Summary of research on dual rotor dynamics of aero-engine during maneuver[C]// Proceedings of the 13th National Conference on Nonlinear Vibration and the 10th National Conference on Nonlinear Dynamics and Motion Stability. 2011:1-6.
[2] 陈炳贻.航空发动机平衡工艺技术的发展[J]. 推进技术, 1998,19(4):13-17.
CHEN Bing-yi. Development of balance technology for aero engines[J]. Journal of propulsion technology, 1998,19(4):13-17.
[3] 陈予恕,张华彪.航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8):1371-1391.
CHEN Yu-shu, ZHANG,Hua-biao. Review and prospect on the pesearch of dynamics of complete aero-engine Systems[J].Acta Aeronautcia et Astronautica Sinica, 2011, 32(8):1371-1391.
[4] 艾延廷,周海仑,孙丹,等.航空发动机整机振动分析与控制[J]. 沈阳航空航天大学学报, 2015,32(5):1-25.
AI Ting-yan, ZHOU Hai-lun, SUN Dan, et al. Study on the contol of the whole aero-engine vibration[J]. Journal of Shenyang aerospace university, 2015,32(5):1-25.
[5] 王晓升.考虑平衡质量受限时最小二乘影响系数法的改进[J].西安交通大学学报, 1998, 32(11):76-80.
WANG Xiao-sheng. An improved least square influence coefficient method for balancing mass of rotors[J]. Journal of Xi’an Jiaotong University, 1998, 32(11):76-80.
[6] 王星星,吴贞焕,杨国安,等.基于改进粒子群算法的最小二乘影响系数法的理论及实验研究[J].振动与冲击, 2013, 32(8):100-104.
WANG Xing-xing, WU Zhen-huan, YANG Guo-an, et al. Theory and tests for least square influence coefficient method based on an improved particle swarm optimization algorithm[J]. Journal of vibration and shock, 2013, 32(8):100-104.
[7] 万莉莉,张自强,李传江.基于遗传算法的动平衡最小二乘影响系数法的优化[J]. 机械与电子, 2010, 2010( 4):21-24.
WAN Li-li, ZHANG Zi-qiang, LI Chuan-jiang. Optimization of least square influence coefficient method based on genetic algorithm of rotor dynamic balance[J]. Machinery& Electronics, 2010, 2010( 4):21-24.
[8] Villafane Saldarriaga M, Steffen V, Der Hagopian J, et al. On the balancing of flexible rotating machines by using an inverse problem approach [J]. Journal of Vibration and Control, 2011, 17(7):1021-1033.
[9] 刘翠红,王克明,夏锟,等.转子系统不平衡响应的逆向分析[J]. 沈阳航空航天大学学报, 2016, 33(4):30-37.
LIU Cui-hong, WANG Ke-ming, XIA Kun, et al. Reverse analysis of rotor unbalance response[J]. Journal of Shenyang aerospace university, 2016, 33(4):30-37.
[10] 臧廷朋,温广瑞,廖与禾.基于稳健回归分析的转子系统不平衡量识别[J]. 振动、测试与诊断, 2016, 36(1):126-202.
ZANG Tian-peng, WEN Guang-rui, LIAO Yu-he. Estimation of the Unbalance of Rotor System Based on Robust Regression Analysis[J]. Journal of Vibration, measurement & diagnosis, 2016, 36(1):126-202.
[11] 牟玉喆,潘鑫,高金吉,等.基于LabVIEW的不平衡振动信号相位实时提取方法研究[J]. 工业仪表与自动化装置, 2015, 2015(5):17-20.
MOU Yu-zhe, PAN Xin, GAO Jinji, et al. Research on the phase real-time extraction methods for imbalance vibration signa based on the LabVIEW platform[J]. Industrial Instrumentation & Automation, 2015, 2015(5):17-20.
[12] 冯健朋,赵小勇.航空发动机振动不平衡相位检测方法研究[J]. 燃气涡轮试验与研究, 2018, 31(3):38-42.
FENG Jian-peng, ZHAO Xiao-yong. Research on the method of aero-engine vibration imbalance phase measurement[J]. Gas Turbine Experiment and Research, 2018, 31(3):38-42.
[13] 温登哲,陈予恕.航空发动机机匣动力学研究进展与展望[J]. 动力学与控制学报, 2013, 11(1):12-19.
WEN Deng-zhe, CHEN Yu-shu. Review and prospect on the research of aero-enging casing dynamics[J]. Journal of dynamics and control, 2013, 11(1):12-19.
[14] 闫晓军,张辉,洪杰,等.典型航空发动机结构对比与分析[M]. 北京航空航天大学出版社, 2011.
YAN Xiao-jun. Comparison and analysis of typical aero-engine structure[M]. Beihang university press, 2011.
[15] 马英群,张锴,徐蒙,等.多重激励下机匣振动能量传递规律与耦合特性[J]. 推进技术, 2019, 2019(40):511-520.
MA Qun-ying, ZANG Kai, XU Meng, et al. Investigation on Transmitting Regularities and Coupling Characteristics of Vibrational Energy for Casing Structure under Multiple Excitations[J]. Journal of propulsion technology, 2019, 2019(40):511-520.
[16] 王维民,高金吉,江志农,等.旋转机械无试重现场动平衡原理与应用[J]. 振动与冲击, 2010, 29(2):212-215.
WANG Wei-min,GAO Jin-ji,JIANG Zhi-nong,et al. Principle and application of no trial weight field balancing for a rotating Machinery[J]. Journal of Vibration and Shock, 2010, 29(2):212-215.
[17] Goodman T P. A Least-Squares Method for Computing Balance Corrections[J]. Journal of Manufacturing Science & Engineering, 1964, 86(3):273-277.
[18] Kennedy J, Eberhart R C. Particle Swarm Optimization From Proc[J]. IEEE Int, Lconf.on Neural Networks.IEBE Service Center, Piscataway, NJ, 1995, 1995(4):1942-1948.
[19] 钟一谔,何衍宗,王正,等.转子动力学[M]. 北京:清华大学出版社,1987.
ZHONG Yi-e, HE-Yan-zong, WANG Zheng, et al. Rotor dynamics[M]. Beijing: Tsinghua University Press, 2000.
[20] 周云,易伟建.用Poly MAX方法进行弹性地基板的实验模态分析[J]. 振动与冲击, 2007, 26(7):139-144.
ZHOU Yun, YI Wei-jian. Experimental modal analysis of a slab on elastic foundation by polymax method[J]. Journal of Vibration and Shock, 2007, 26(7):139-144.
[21] 王彦生, 张耀强, 张彦斌, 等.非线性Jeffcott转子-滚动轴承系统动力学分析[J].振动、测试与诊断, 2010, 30(4):367-370.
WANG Yan-sheng, ZHANG Yao-qiang, ZHANG Yan-bin, et al. Dynamics Analysis of a Nonlinear Rolling Bearing-Jeffcott Rotor System[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(4):367-370.

PDF(1244 KB)

507

Accesses

0

Citation

Detail

段落导航
相关文章

/