非高斯随机振动下包装件时变振动可靠性分析

朱大鹏

振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 96-102.

PDF(1373 KB)
PDF(1373 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (16) : 96-102.
论文

非高斯随机振动下包装件时变振动可靠性分析

  • 朱大鹏
作者信息 +

Time-dependent reliability analysis of package under non-Gaussian excitation

  • ZHU Dapeng
Author information +
文章历史 +

摘要

包装件在流通过程中经常受到非高斯随机振动激励的作用,提出了一种包装件在非高斯随机振动激励条件下的时变可靠性的分析方法。结合多项式混沌扩展和Karhunen-Loeve扩展,提出了基于功率谱(或自相关函数)、均值、方差、偏斜度和峭度信息的非高斯随机振动激励的模拟方法;为减小数值分析量,应用拟蒙特卡洛法,在随机变量空间中合理控制变量的分布模拟非高斯随机振动激励,通过四阶龙格库塔法分析,用较少的随机振动模拟样本准确得到了包装件加速度响应的前四阶矩和自相关函数。基于响应的统计信息,应用该研究提出的多项式混沌扩展、Karhunen-Loeve扩展和拟蒙特卡洛分析,获得包装件加速度响应样本,计算包装件的时变可靠性,用原始蒙特卡洛法验证了计算的准确性;该方法在包装件的可靠性分析、包装系统优化等方面具有重要意义。

Abstract

In the process of distribution, the package is often excited by non-Gaussian excitation.In this paper, a methodology was proposed for accurate simulation of non-Gaussian excitation as well as the efficient analysis of time-dependent reliability of packages.The non-Gaussian excitation was simulated based on the first four moments of the input, i.e.the mean, variance, skewness, kurtosis and the PSD (or autocorrelation) using the polynomial chaos expansion and the Karhunen-Loeve expansion.In order to analyze the package reliability in an efficient way, the quasi Monte Carlo method was adopted, in which, the random variables were reasonably selected in random variable space to simulate non-Gaussian excitation, the acceleration response of package was obtained using the 4th  Runge-Kutta method.The accurate statistical information of the first four moments and the autocorrelation can be obtained by reduced number of simulation.Based on the moments and autocorrelation of the acceleration response, the proposed polynomial chaos expansion, the Karhunen-Loeve expansion and the quasi Monte Carlo method were used to simulate the package response.the time dependent reliability of package was analyzed and the analysis was verified by crude Monte Carlo simulation.The proposed non-Gaussian vibration simulation method and package reliability analysis method can provide theoretical basis for package analysis and packaging design optimization.

关键词

时变可靠性 / 非高斯随机振动 / 多项式混沌扩展 / Karhunen-Loeve扩展 / 拟蒙特卡洛

Key words

time-dependent reliability / non-Gaussian random vibration / polynomial chaos expansion / Karhunen-Loeve expansion / quasi Monte Carlo simulation

引用本文

导出引用
朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击, 2020, 39(16): 96-102
ZHU Dapeng. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock, 2020, 39(16): 96-102

参考文献

[1] Wang Zhi-Wei, Jiang Jiu-Hong. Evaluation of product dropping damage based on key component[J]. Packaging Technology and Science, 2010, 23(4):227-238.
[2] 王军,王志伟. 考虑易损件的正切型包装系统冲击破损边界曲面研究[J]. 振动与冲击,2008,27(2):166-167.
WANG Jun, WANG Zhi-wei. Damage boundary surface of a tangent nonlinear packaging system with critical component[J]. Shock and Vibration, 2008,27(2):166-167.
[3] 黄秀玲,王军,卢立新等. 三次非线性包装系统关键部件冲击响应影响因素分析[J]. 振动与冲击,2010,29(10):179-181.
HUANG Xiu-ling, WANG Jun,  LU Li-xin et al. Factors influencing shock characteristics of a cubic nonlinear packaging system with critical component[J]. Shock and Vibration, 2010,29(10):179-181.
[4] 王军,卢立新,王志伟. 双曲正切包装系统关键部件三维冲击谱研究[J]. 振动与冲击,2010,29(10):99-101.
WANG Jun, LU Li-xin, WANG Zhi-wei. Three-dimensional shock spectrum of a hyperbolic tangent nonlinear packaging system with critical component[J]. Shock and Vibration, 2010,29(10):99-101.
[5] 郝蒙, 陈安军. 非线性系统带集中质量悬臂梁易损件跌落冲击特性[J] 振动与冲击, 2015,34(15):162-167.
HAO Meng, CHEN An-jun. Dropping shock characteristics of a cubic nonlinear system with a cantilever beam type elastic critical component attaching a concentrated tip mass[J]. Journal of Vibration and Shock, 2015,34(15):162-167.
[6] 卢富德, 陶伟明, 高德. 具有简支梁式易损部件的产品包装系统跌落冲击研究[J]. 振动与冲击, 2012, 31(5):79-81.
LU Fu-de, TAO Wei-ming, GAO De. Drop impact analysis on item packaging system with beam type elastic critical component[J]. Journal of Vibration and Shock, 2012,31(5):79-81.
[7] 高德, 卢富德. 基于杆式弹性易损部件的非线性系统跌落冲击研究[J]. 振动与冲击, 2012, 31(15):47-49.
GAO De, LU Fu-de. Drop impact analysis of packaging system with bar type elastic critical components[J]. Journal of Vibration and Shock, 2012,31(15):47-49.
[8] Gibert J. M , Batt G. S. Impact oscillator model for the prediction of dynamic cushion curves of open cell foams[J]. Packaging Technology and Science, 2016, 29(8-9):437-449.
[9] Piatkowski T, Osowski P. Modified method for dynamic stress-strain curve determination of closed-cell foams[J]. Packaging Technology and Science, 2016, 29(6):337-349.
[10] 朱大鹏,龚箭. 单自由度包装件位移响应的首次穿越损坏问题研究[J]. 包装工程, 2017, 38(21):68-73.
ZHU Da-peng, GONG Jian. Research on displacement response first-passage failure of single-degree-of-freedom package[J]. Packaging Engineering, 2017, 38(21):68-73.
[11] 朱大鹏. 非线性包装件加速度响应首次穿越问题分析[J] 振动与冲击,2018,37(24):166-171.
ZHU Da-peng. Acceleration response first passage failure probability analysis method for nonlinear package[J]. Journal of Vibration and Shock, 2018,37(24):166-171.
[12] 朱大鹏. 非线性包装系统中关键部件振动可靠度分析[J] 振动与冲击,已录用.
ZHU Da-peng. Vibration reliability for critical component in packaging system[J]. Journal of Vibration and Shock, Accepted
[13] Singh A, Mourelatos Z P, Li J. Design for Lifecycle Cost Using Time-Dependent Reliability[J]. Journal of Mechanical Design. 2010, 132(9):091008.
[14] 张德权, 韩旭, 姜潮 等. 时变可靠性的区间PH12分析方法[J]. 中国科学(物理学•力学•天文学), 2015, 45(5):054601.
Zhang D Q, Han X, Jiang C, et al. The interval PHI2 analysis method for time-dependent reliability [J]. Sci Sin-Phys Mech Astron, 2015, 45(5): 054601.
[15] Li J,Mourelatos Z P. Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm[J]. Journal of Mechanical Design. 2009, 131(7):071009.
[16] Zhen Hu Z,Du X P. Reliability analysis for hydrokinetic turbine blades [J]. Renewable Energy: An International Journal. 2012, 48(6):251-262.
[17] Mourelatos Z P, Majcher M, Pandey V et al.Time-dependent reliability analysis using the total probability theorem[J]. Journal of Mechanical Design, 2015, 137(3):031405.
[18] Majcher M, Mourelatos Z P, Geroulas V et al. An efficient method to calculate the failure rate of dynamic systems with random parameters using the total probability theorem[J]. SAE International Journal of Materials and Manufacturing, 2015, 8(3):623-631.
[19] Drignei, D, Baseski I, Mourelatos Z P. A random process metamodel approach for time-dependent reliability[J]. Journal of Mechanical Design, 2016, 138(1):011403.
[20] Baseski I, Drignei, D, Mourelatos Z P. A New Metamodeling Approach for Time-Dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes[J].SAE International Journal of Materials and Manufacturing, 2014,7(3):530-536.
[21] 朱大鹏, 李明月. 铁路非高斯随机振动的数字模拟与包装件响应分析[J]. 包装工程, 2016,37(1):1-5.
Zhu D P, Li M Y. Digital Simulation of Non-Gaussian Random Vibration of Railway and packaging System Response Analysis[J]. Packaging Engineering,  2016,37(1):1-5.
[22] 蒋瑜;陈循;陶俊勇 等.超高斯伪随机振动激励信号的生成技术[J]. 振动工程学报, 2005,18(2):179-183.
Jiang Y, Chen X, Tao J Y et al. The technique of generating super-Gaussian and quasi-random vibration exciting signals[J]. Journal of Vibration Engineering, 2005,18(2):179-183.
[23] 蒋瑜;陈循;陶俊勇 等. 指定功率谱密度、偏斜度和峭度值下的非高斯随机过程数字模拟[J]. 系统仿真学报, 2006, 18(5):1127-1130.
Jiang Y, Chen X, Tao J Y et al. Numerically simulating non-Gaussian random processes with specified PSD, skewness and kurtosis[J]. Journal of System Simulation, 2006, 18(5):1127-1130.
[24] Rouillard, V, Sek M A. Synthesizing nonstationary, non-Gaussian random vibrations[J]. Packaging Technology and Science, 2010, 23(8):423-439.
[25] Garcia-Romeu-Martinez M A, Rouillard V. On the Statistical Distribution of Road Vehicle Vibrations[J]. Packaging Technology and Science, 2011, 24(8):451-467.
[26] Steinwolf A, Schwarzendahl S M, Wallaschek J. Implementation of low-kurtosis pseudo-random excitations to compensate for the effects of nonlinearity on damping estimation by the half-power method[J]. Journal of Sound and Vibration, 2010, 333(3):1011-1023.
[27] Xiu D, Karniadakis G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644.
[28] 张贤达. 矩阵论及其工程应用[M]. 清华大学出版社, 北京, 2015.
Xianda Zhang. Matrix theory and its application in engineering[M]. Tsinghua Press, Beijing, 2015.
[29] Loeve M. Probability Theory[M]. Springer-Verlag, Berlin, 1977.
[30] Phoon, K K, Huang S P, Quek S T. Simulation of second-order processes using Karhunen-Loeve expansion[J]. Computers & Structures, 2002, 80(12):1049-1060.
[31] Lemieux C. Monte Carlo and Quasi-Monte Carlo Sampling[M]. Springer, New York, 2009.
[32] Zhang H , Dai H , Beer M , et al. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2):137–151.
[33] Tsianika V, Geroulas V, Mourelatos Z. A methodology for fatigue life estimation of linear vibratory systems under non-Gaussian loads[J]. SAE International Journal of Commercial Vehicles, 2017, 10(2):2017-01-0197.
[34] 朱大鹏, 周世生. 瓦楞纸板在冲击激励下的动态特性建模与响应分析[J]. 机械科学与技术, 2013, 32(2):257-262.
Zhu Dapeng, Zhou Shisheng. Dynamic modeling and response analysis of corrugated paperboard to shock excitation[J]. Mechanical Scienceand Technology for Aerospace Engineering, 2013, 32(2):257-262. 

PDF(1373 KB)

Accesses

Citation

Detail

段落导航
相关文章

/