管道内流对海洋弹性管振动影响的数值仿真研究

柳博瀚1,陈正寿1,2,鲍健1,崔振东3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 177-185.

PDF(2745 KB)
PDF(2745 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 177-185.
论文

管道内流对海洋弹性管振动影响的数值仿真研究

  • 柳博瀚1,陈正寿1,2,鲍健1,崔振东3
作者信息 +

Numerical simulation for effects of pipeline internal flow on vibration of flexible marine pipe

  • LIU Bohan1, CHEN Zhengshou1,2, BAO Jian1, CUI Zhendong3
Author information +
文章历史 +

摘要

管道的内部流动对于海洋弹性管道而言是一种重要的振动诱发因素,但是目前相关理论较少。运用CFD单双、向流固耦合分析方法,开展了管道内流对海洋弹性管道振动响应影响的研究。通过仅考虑外流的模型试验与数值仿真结果对比分析,发现在外流速度较低时该分析方法与实验结果吻合度较高;在同时考虑内流和外流的工况中,发现内流速度会对管道的振动频率及幅度造成不同程度的影响。在内流速度相对比较小时,管道内流对管道的振动频率及振幅影响都较小;在内流速度相对较大的时候,管道内流对管道横流向振幅及顺流向振型影响较为明显,促使管道在低频段更容易发生共振现象,增加管道的疲劳损伤可能性。该研究关于管内流动对于海洋弹性管道影响的研究,对于弹/柔性管道的结构强度设计和疲劳分析具有一定的参考价值。

Abstract

Pipeline internal flow is an important vibration-inducing factor for marine elastic pipelines, but at present, there are few related theories. Here, based on the CFD single and double directional fluid-structure interaction analysis method, effects of internal flow propagating along pipe-span on vibration responses of flexible marine pipe/riser were investigated. Contrastive analysis between results of model tests and numerical simulation ones only considering external flow showed that the simulated results using the proposed analysis method and test ones agree better when external flow velocity is low. Under the working condition simultaneously considering internal and external flows, it was shown that different internal flow velocities can have different degrees of influence on vibration frequency and amplitude of flexible marine pipe/riser; when internal flow velocity is relatively small, internal flow has little influence on vibration frequency and amplitude of flexible pipe; when internal flow velocity is relatively large, internal flow has more obvious influence on flexible pipe’s transverse flow vibration amplitude and forward flow vibration mode to make flexible pipe easily have resonance within a low frequency range and increase the possibility of its fatigue damage; the study results can provide a reference for structural strength design and fatigue analysis of elastic/flexible pipelines.

关键词

弹性管 / 数值仿真 / 管道内流 / 疲劳损伤

Key words

flexible pipe / numerical simulation / internal flow / fatigue damage

引用本文

导出引用
柳博瀚1,陈正寿1,2,鲍健1,崔振东3. 管道内流对海洋弹性管振动影响的数值仿真研究[J]. 振动与冲击, 2020, 39(17): 177-185
LIU Bohan1, CHEN Zhengshou1,2, BAO Jian1, CUI Zhendong3. Numerical simulation for effects of pipeline internal flow on vibration of flexible marine pipe[J]. Journal of Vibration and Shock, 2020, 39(17): 177-185

参考文献

[1] 唐国强, 吕林, 滕斌,等. 大长细比柔性杆件涡激振动实验[J]. 海洋工程, 2011, 29(01): 18-25.
Tang Guoqiang, Lu Lin, Teng Bin, et al. Vortex-induced vibration experiments of large length-to-fine ratio flexible members[J]. Ocean Engineering, 2011, 29(01): 18-25.
[2] American Petroleum Institute:API RP 2RD-Dsign of Risers for Floating Production Systems and Tension-Leg Platforms[M]. American:American Petroleum Institute. 1998.
[3] Veritas Det Norske. Offshore Standard DNV-OS-F201-Dynamic Risers[M]. Norway :Det Norske Veritas. 2001.
[4] 陈伟民, 张立武, 李敏. 采用改进尾流振子模型的柔性海洋立管的涡激振动响应分析[J]. 工程力学, 2010, 27(05): 240-246.
CHEN Weimin, ZHANG Liwu, LI Min. Vortex-induced vibration response analysis of flexible marine riser with improved wake oscillator model[J]. Engineering Mechanics, 2010, 27(05): 240-246.
[5] 陈正寿. 柔性管涡激振动的模型实验及数值模拟研究[D]: 中国海洋大学, 2009.
Chen Zhengshou. Model experiment and numerical simulation of vortex-induced vibration of flexible pipe [D]: Ocean University of China,2009.
[6] Nikolić M., Rajković M. Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends[J]. Journal of Fluids and Structures, 2005, 22(2).
[7] 娄敏. 海洋输流立管涡激振动试验研究及数值模拟[D]: 中国海洋大学, 2007.
Lou Min. Experimental study and numerical simulation of vortex-induced vibration of marine conveying riser [D]: Ocean University of China, 2007.
[8] Chandrasekharan Shailesh. Large Eddy Simulation of Turbulent Wake Behind a Square Cylinder With a Nearby Wall[J]. Journal of Fluids Engineering, 2002, 124(1): 81-90.
[9] 许明, 陈学东, 王冰, 等. 悬跨海底管道绕流三维特性的大涡数值模拟研究[J]. 流体机械, 2018, 46(05): 18-24.
Xu Ming, Chen Xuedong, Wang Bing, et al. Large eddy numerical simulation of three-dimensional characteristics of suspended submarine pipelines[J]. Fluid Machinery, 2018, 46(05): 18-24.
[10] Chen Zhengshou, Kim, et al. Effect of upward internal flow on dynamics of riser model subject to shear current[J]. China Ocean Engineering, 2012, 26(1): 95-108.
[11] Chen Zheng Shou, Kim Wu Joan. Effect of bidirectional internal flow on fluid–structure interaction dynamics of conveying marine riser model subject to shear current[J]. International Journal of Naval Architecture & Ocean Engineering, 2012, 4(1): 58-71.
[12] Yamamoto C. T., Meneghini J. R., Saltara F., et al. Numerical simulations of vortex-induced vibration on flexible cylinders[J]. Journal of Fluids & Structures, 2004, 19(4): 467-489.
[13] Tutar Mustafa, E.Holdo Arne. Large Eddy Simulation of a Smooth Circular Cylinder Oscillating Normal to a Uniform Flow[J]. Journal of Fluids Engineering: Transactions of the ASME, 2000, (4): 694-702.
[14] Wu Xiaodong, Ge Fei, Hong Youshi. A review of recent studies on vortex-induced vibrations of long slender cylinders[J]. Journal of Fluids and Structures, 2011, 28.
[15] Chen Zheng Shou, Kim Wu Joan. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models[J]. International Journal of Naval Architecture & Ocean Engineering, 2010, 2(2): 112-118.
[16] Williamson C. H. K., Govardhan R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(6–7): 713-735.
[17] Chen Zheng-Shou, Rhee Shin Hyung. Effect of traveling wave on the vortex-induced vibration of a long flexible pipe[J]. Applied Ocean Research, 2019, 84.
[18] 赵宗文. 立管模型涡激振动的数值模拟研究[D]: 浙江海洋大学, 2016.
Zhao Zongwen. Numerical simulation of vortex-induced vibration of riser model [D]:Zhejiang Ocean University,2006.

PDF(2745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/