轴力对梁结构耦合损耗因子的影响研究

胡婉璐1,陈海波2,钟强2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 24-30.

PDF(2279 KB)
PDF(2279 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 24-30.
论文

轴力对梁结构耦合损耗因子的影响研究

  • 胡婉璐1,陈海波2,钟强2
作者信息 +

Effects of axial force on coupling loss factor of beam structures

  • HU Wanlu1, CHEN Haibo2, ZHONG Qiang2
Author information +
文章历史 +

摘要

以飞行器中经常使用的耦合梁结构为研究对象,使用点阻抗法分析受到轴力作用耦合梁结构的高频振动传递特性。在考虑梁耦合角度和激励频率变化的情况下,分析轴力对结构振动方程的影响,计算了耦合边界处的耦合损耗因子;选用‘一字梁’模型计算了温度变化对梁结构间传递特性的影响,并通过与有限元结果的对比验证了点阻抗法计算的正确性。结果表明:当面外弯曲波入射时,轴力对梁结构间的传递特性有明显的影响,但随着频率的增加逐渐减小;同时,温度对结构间的耦合损耗因子有明显影响,随着温度的升高,结构间的功率传递减弱。

Abstract

Here, the point impedance method was used to analyze high frequency vibration transfer characteristics of coupled beam structures subjected to axial force. Considering beam structure coupling and excitation frequency varying, effects of axial force on beam structure vibration equation was analyzed, and the coupling loss factor at the coupled boundary was calculated. The "line-beam" model was used to calculate effects of temperature variation on transfer characteristics between beams. The correctness of the point impedance method was verified by comparing its calculation results with those of the finite element method. Results showed that when the out-of-plane bending wave is incident, axial force has an obvious effect on transfer characteristics between beam structures, but this effect decreases gradually with increase in excitation frequency; temperature obviously affects the coupling loss factor between beams, with increase in temperature, power transfer between beam structures weakens.

关键词

耦合梁结构 / 点阻抗法 / 高频振动 / 轴力 / 热环境 / 耦合损耗因子

Key words

coupled beam structure / point impedance approach / high-frequency vibration / axial force / thermal environment / coupling loss factor

引用本文

导出引用
胡婉璐1,陈海波2,钟强2. 轴力对梁结构耦合损耗因子的影响研究[J]. 振动与冲击, 2020, 39(17): 24-30
HU Wanlu1, CHEN Haibo2, ZHONG Qiang2. Effects of axial force on coupling loss factor of beam structures[J]. Journal of Vibration and Shock, 2020, 39(17): 24-30

参考文献

[1]王有懿,赵阳,马文来.耦合梁中高频抖动的行波分析与主动控制[J]. 机械工程学报,2013, 49(22): 185-191.
WANG Youyi,ZHAO Yang,MA Wenlai. Travelling wave analysis and active control of jitter in the median and high frequency regions for coupled beam [J]. Chinese Journal of Mechanical Engineering, 013, 9(22): 185-191.
[2]Zhaolin Chen,Zhichun Yang,Ning Guo,Guiwei Zhang. An energy finite element method for high frequency vibration analysis of beams with axial force [J]. Applied Mathetical Modelling.2018,61:521-539
[3]Bokaian A. Natural frequencies of beams under compressive axial loads[J]. Journal of Sound & Vibration, 1990, 142(3):481-498.
[4]Kosmatka J B. An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams[J]. Computers & Structures, 1995, 57(1):141-149.
[5]陈红永, 陈海波, 张培强. 轴向受压运动梁横向振动特性的数值分析[J]. 振动与冲击, 2014, 33(24):101-105.
CHEN Hongyong CHEN Haibo,ZHANG Peiqiang. Numerical analysis of free vibration of axially moving beam under compressive load [J]. Journal of Vibration and Shock, 2014, 33(24): 101-105.
[6]Avsec J,Oblak M. Thermal vibrational analysis for simply supported beam and clamped beam [J]. Journal of Sound and Virbration,2007, 308(3): 514-525.
[7]陈强,张鹏,李彦斌,等. 热环境下长宽比对L型折板统计能量分析参数的影响[J]. 振动与冲击,2018, 37(4): 191-196.
CHEN Qiang,,ZHANG Peng,LI Yanbin,et al. Effect of aspect ratio on statistical energy analysis parameters of L-shaped folded plate under thermal environment [J]. Journal of Vibration and Shock, 2018, 37(4): 191-196.
[8]Zhang W, Chen H, Zhu D, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis [J]. Journal of Sound and Vibration, 2014, 333(9): 2588–2600.
[9]江民圣,牛军川,郑建华,等. L型耦合板结构能量传递系数特性的研究[J]. 振动与冲击,2015, 34(17): 131-136.
JIANG Mingsheng,,NIU Junchuan,ZHENG Jianhua,et al. Energy transfer corfficients’ features of L-shaped coupled plates [J]. Journal of Vibration and Shock, 2015, 34(17): 131-136.
[10]M.J.Stablik. Coupling loss factors at a beam L-joint revisited [J]. The Journal of the Acoustical Society of America, 1982, 72(4), 1285-1288.
[11]J.A.Moore. Vibration transmission through frame or beam junctions [J]. The Journal of the Acoustical Society of America, 1982, 2766-2776.
[12]R.S.Langley,K.H.Heron. Elastic wave transmission through plate/beam junctions [J]. Journal of Sound and Vibration, 1990, 9(3), 469-486.
[13]刘见华, 金咸定. 梁结构耦合点的振动功率传输[J]. 上海交通大学学报, 2004, 38(10):123-134.
LIU Jianhua, JIN Xianding. Vibratiory Power Transmission Through Beam Junctions [J]. Journal of Shanghai Jiaotong University, 2004,38(10):123-134.
[14]孙丽萍.能量有限元法研究及其应用[D].哈尔滨工程大学,2004.
[15]王有懿, 赵阳, 马文来. 三维耦合Timoshenko梁功率流主动控制研究[J]. 振动与冲击, 2014, 33(11):148-154.
WANG Youyi,ZHAO Yang,MA Wenlai. Active control of power flow in a three dimensional coupled Timonshenko beam [J]. Journal of Vibration and Shock, 2014, 33(11): 148-154.
[16]沈轻舟,车驰东. 基于波分析法的L型结构弯-扭耦合振动研究[J]. 振动与冲击, 2018, 37(24):92-98.
SHEN Qingzhou,Che Chidong. Coupling vibration of bending-torsional waves at an L shaped junction based on wave approach [J]. Journal of Vibration and Shock, 2018, 37(24): 92-98.
[17]姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京理工大学出版社, 1995.
[18]A.Le.Bot. Foundation of Statistical Energy Analysis in Vibro-acoustics[M]. Oxford University,2015.
[19]王用岩. 高频声振耦合分析与批量寿命预报方法研究[D]. 中国科学技术大学, 2016.

PDF(2279 KB)

Accesses

Citation

Detail

段落导航
相关文章

/