基于MEMS惯性测量的输电导线振动损伤分析

基于MEMS惯性测量的输电导线振动损伤分析

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 261-267.

PDF(1052 KB)
PDF(1052 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 261-267.
论文

基于MEMS惯性测量的输电导线振动损伤分析

  • 基于MEMS惯性测量的输电导线振动损伤分析
作者信息 +

Vibration damage analysis of transmission line based on MEMS inertial measurement

  • YANG Jinxian1, WANG Mengmeng1, LIU Yipeng2, WANG Yaping1, LI Mingqi1
Author information +
文章历史 +

摘要

为了有效地分析输电导线振动引起的损伤,提出一种基于MEMS惯性测量的振动损伤度量方法。首先利用MEMS惯性测量输电线运动的三轴加速度和角速度,为精准提取输电导线运动特征,通过滤波和分段进行预处理,再进行积分与FFT变换得到输电导线平动/转动的幅值和频率;然后从损伤耗能的角度,利用幅值和频率参数构造振动耗能函数,度量输电导线振动中材料损伤所消耗的能量;然后根据振动损伤与振动耗能函数之间的关系,建立振动损伤函数模型,计算输电导线的损伤程度;最后设计输电导线振动损伤模拟试验进行验证。结果表明建立的振动损伤函数模型能够准确判断输电导线的损伤程度,说明所提出的输电导线振动损伤度量分析方法是有效的。

Abstract

In order to effectively analyze damage caused by vibration of transmission lines, a vibration damage measurement method based on MEMS inertial measurement was proposed. Firstly, MEMS inertial measurement was used to measure 3-axis accelerations and angular velocities of a transmission line’s motion. To accurately extract motion characteristics of the transmission line, pre-processing these signals was performed through filtering and segmentation, and integration and FFT transform were done for the pre-processed signals to obtain amplitude and frequency of the transmission line translation/rotation. Then, from the perspective of damage energy dissipation, vibration energy dissipation function was constructed by using amplitude and frequency parameters to measure the energy dissipated by material damage in transmission line vibration. Based on the relationship between vibration damage and vibration energy dissipation function, the vibration damage function model was established to calculate damage degree of transmission line. Finally, simulation tests for transmission line vibration damage was designed and performed. Results showed that the established vibration damage function model can accurately reflect damage degree of transmission line; the proposed transmission line’s vibration damage measurement analysis method is effective.

关键词

惯性测量 / 线路平动/转动 / 幅值和频率 / 损伤耗能 / 振动损伤模型

Key words

inertial measurement / lines translation/rotation / amplitude and frequency / damage energy dissipation / vibration damage model

引用本文

导出引用
基于MEMS惯性测量的输电导线振动损伤分析. 基于MEMS惯性测量的输电导线振动损伤分析[J]. 振动与冲击, 2020, 39(17): 261-267
YANG Jinxian1, WANG Mengmeng1, LIU Yipeng2, WANG Yaping1, LI Mingqi1. Vibration damage analysis of transmission line based on MEMS inertial measurement[J]. Journal of Vibration and Shock, 2020, 39(17): 261-267

参考文献

[1] Zhou Z R, Cardou A, Fiset M, et al. Fretting fatigue in electrical transmission line[J].Wear,1994,173(1-2):179-188.
[2] Zhou Z R , Goudreau S , Fiset M, et al. Single wire fretting fatigue tests for electrical conductor bending fatigue evaluation[J]. WEAR,1995,181-183(part-P2):537-543.
[3] Roughan J C. Estimation of conductor vibration amplitudes caused by aeolian vibration[J]. Wind Engineering,1984, 14(1):279-288.
[4] 王藏柱,杨晓红.输电导线路导线的振动和防振[J].电力科学与工程,2002,18(1):69-70.
WANG Zang-zhu, YANG Xiao-hong. Vibration and vibration protection of transmission line conductors[J]. Power Science and Engineering,2002,18(1):69-70.
[5] 孔德怡,李黎,龙晓鸿,等.特高压架空输电导线微风振动有限元分析[J].振动与冲击,2007,26(8):64-67.
KONG De-yi, LI Li, LONG Xiao-hong, et al. Finite element analysis of breeze vibration of UHV overhead transmission Lines[J]. Journal of Vibration andShock,2007,26(8):64-67.
[6] 黄新波,赵隆,舒佳,等.输电导线路导线微风振动在线监测技术[J].高电压技术,2012,38(8):1863-1870.
HUANG Xin-bo, ZHAO Long, SHU Jia, et al. On-line monitoring technology for micro-wind vibration of transmission line conductors[J]. High Voltage Engineering,
2012,38(8):1863-1870.
[7] 黄新波,潘高峰,司伟杰,等.基于压电式加速度计的导线微风振动传感器设计[J].高压电器,2017,53(4):99-106.
HUANG Xin-bo, PAN Gao-feng, SI Wei-jie, et al. Design of wire breeze vibration sensor based on piezoelectric accelerometer[J]. High Voltage Apparatus,2017,53(4):99-106.
[8] 王景朝,徐乃管.复合交变应力条件下的导线疲劳试验方法[J].电力建设,2001,22(2):512-516.
WANG Jing-chao, XU Nai-guan. A method for conducting wire fatigue under combined alternating stress conditions[J]. Electric Power Construction,2001,22(2):512-516.
[9] Park M, Gao Y. Error analysis and stochastic modeling of low-cost MEMS accelerometer[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2006, 46(1):27-41.
[10] Gao Z Y, Niu X J, Guo M F. Quaternion-based kalman filter for micro-machined strapdown attitude heading reference system[J]. Chinese Journal of Aeronautics,2002,15(3):171-175.
[11] 杨金显,杨闯,李双磊,等.基于MIMU的输电导线路振动分析[J].振动与冲击,2018,37(11):230-236.
YANG Jin-xian, YANG Chuang, LI Shuang-lei, et al. Vibration analysis of transmission line based on MIMU[J]. Journal of Vibration and Shock,2018, 37(11):230-236
[12] 潘忠华,徐乃管,陈露娟.悬垂线夹出口处动弯应变与弯曲振幅关系的探讨[J].中国电力,1982,15(12):20-25.
PAN Zhong-hua, XU Nai-guan, CHEN Lu-juan. Discussion on the relationship between dynamic bending strain and bending amplitude at the exit of suspension clamp[J]. China Electric Power,1982,15(12):20-25.
[13] 赵美云,赵新泽,付志成,等.微风振动下架空导线接触特性有限元分析[J].机械强度,2015,37(6):1113-1118.
ZHAO Mei-yun, ZHAO Xin-ze, FU Zhi-cheng, et al. Finite element analysis of contact characteristics of overhead conductors under breeze vibration[J]. Journal of Mechanical Strength,2015,37(6):1113-1118.
[14] Lingsheng Z, Xiumin J, Jianguo L,et al. Mathematic model of attrition of quartzite particles as medium material in fluidized bed[J]. Journal of Chemical Industry and Engineering(China),2007,58(11):2776-2781.
[15] 张德坤,葛世荣. 钢丝微动磨损的评定参数及理论模型研究[J].摩擦学学报,2005,25(1):50-54.
ZHANG De-kun, GE Shi-rong. Evaluation parameters and theoretical models of fretting wear of steel wire[J]. Journal of Tribology,2005,25(1):50-54.
[16] DL/T 1069-2016.架空输电线路导地线补修导则[S].国家能源局.2016.
DL/T 1069-2016. Guidelines for repairing the grounding line of overhead transmission lines [S]. National Energy Administration. 2016.
[17] 战杰.输电导线路状态监测诊断技术[M].中国电力出版社, 2014.
ZHAN Jie. State monitoring and diagnosis technology for transmission lines[M].China Electric Power Press,2014.

PDF(1052 KB)

Accesses

Citation

Detail

段落导航
相关文章

/