纵向超声振动钻削CFRP/钛合金叠层材料的动态冲击效应分析

王东,焦锋,张世杰,李远霄

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 47-56.

PDF(4209 KB)
PDF(4209 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 47-56.
论文

纵向超声振动钻削CFRP/钛合金叠层材料的动态冲击效应分析

  • 王东,焦锋,张世杰,李远霄
作者信息 +

Dynamic impact effect analysis for longitudinalultrasonic vibration drilling of CFRP / titanium alloy laminated plate

  • WANG Dong, JIAO Feng, ZHANG Shijie, LI Yuanxiao
Author information +
文章历史 +

摘要

为了研究纵向超声振动钻削CFRP/钛合金叠层板的动态冲击效应,将钻头视为一端固定、一端自由的等直径弹性直杆,把刀具-工件系统简化为以超声振动为激励的基础振动系统,建立动力学模型,并通过钻削试验验证了模型的可靠性和实用性。研究结果表明,超声振动产生的动态冲击力幅值,取决于钻头的几何参数和悬伸长度、超声振动的振幅和频率,以及被加工材料的力学特性,与钻削用量(每转进给量和主轴转速)无关;动态冲击力幅值的大小与超声振动的振幅成线性关系,超声振动频率的影响较为微弱;动态冲击力幅值的大小与钻头直径近似为线性关系,与钻头的悬伸长度成非线性关系;超声振动的振幅增大,或钻头直径和悬伸长度增大,都会使动态冲击力幅值增加;加工中的实际动态冲击力的大小与被加工材料的弹性模量和刚性有关,弹性模量和刚性高时,实际动态冲击力也大。这种研究方法和结论对超声振动钻削冲击效应的定量分析和超声振动钻削技术的推广应用提供了参考。

Abstract

In order to study dynamic impact effect of longitudinal ultrasonic vibration drilling of CFRP/titanium alloy laminated plate,drilling bitwas regarded as an equal diameter elastic straight rodwith one built-in end and another free one, and a tool-workpiece system was simplified as a foundation vibration system excited by ultrasonic vibration to establish the whole system’s dynamicmodel. Drilling tests were used to verify the reliability and practicability of the model.Results showed that the dynamic impact force generated by ultrasonic vibration depends on drilling bit’s geometric parameters andoverhang length, ultrasonic vibration’s frequency and amplitude and mechanicalcharacteristics of processedmaterial,and it is irrelevant to drilling amounts of feed rate per revolution and spindle speed;dynamic impact force amplitude is linearly related to ultrasonic vibration’s amplitude, effects of ultrasonic vibration frequency areweaker;dynamic impact force amplitude has an approximate linear relation with drill bit’s diameter and a non-linear relation with overhang length;dynamic impact force amplitude increaseswith increase in ultrasonic vibration amplitude or bit’s diameter or bit’s overhang length; the actual dynamic impact force is related to processed material’s elastic modulus and stiffness, the higher the elastic modulus and stiffness, the larger the former; the study method and conclusions provide a reference for quantitative analysis of ultrasonic vibration drilling impact effect and applications of ultrasonic vibration drilling technology.

关键词

纵向超声振动 / 冲击效应 / 振动钻削 / 轴向力 / CFRP/钛合金叠层板

Key words

longitudinal ultrasonic vibration / impact effect / vibration drilling / axial force / CFRP / titanium alloy laminated plate

引用本文

导出引用
王东,焦锋,张世杰,李远霄. 纵向超声振动钻削CFRP/钛合金叠层材料的动态冲击效应分析[J]. 振动与冲击, 2020, 39(17): 47-56
WANG Dong, JIAO Feng, ZHANG Shijie, LI Yuanxiao. Dynamic impact effect analysis for longitudinalultrasonic vibration drilling of CFRP / titanium alloy laminated plate[J]. Journal of Vibration and Shock, 2020, 39(17): 47-56

参考文献

[1] 冯军. 复合材料技术在当代飞机结构上的应用[J]. 航空制造技术,2009,22:40-42.
Feng Jun. Application of Composite Technology in Modern Aircraft Structure[J]. Aeronautical Manufacturing Technology, 2009, 22:40-42.
[2] Iliescu D, Gehin D, Iordanoff I, et al. A discrete element method for the simulation of CFRP cutting[J]. Composites Science and Technology, 2010, 70(1): 73-80.
[3] 沈真. 碳纤维复合材料在飞机结构中的应用[J].高科技纤维与应用,2010,35(4):1-4,24.
Shen Zhen. Application of carbon fiber composites in Aircraft structures[J]. Hi tech Fiber Application, 2010, 35(4): 1-4, 24.
[4] Khashaba U. Delamination in drilling GFR-thermoset composites[J]. Composite Structures, 2004, 63(3-4): 313-327.
[5] Liu D F, Tang Y J, Cong W L. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, (94):1265–1279.
[6] Shyha I, Soo S L, Aspinwall D K, et al. Drilling of titanium/CFRP/aluminium stacks[C]. Key Engineering Materials, 2010, 447:624-633.
[7] Qi Z, Zhang K, Li Y, Liu S, Cheng H. Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks. Composite Structures,2014;107:604-9.
[8] Kuo C.L., Soo S. L., Aspinwall D. K., The effect of cutting speed and feed rate on hole surface integrity in single-shot drilling of metallic-composite tacks, Procedia CIRP, 2014, 13:405-410.
[9] 王明海,马振博,王奔,印文典. CFRP/Ti叠层材料的钻削力变化趋势及振动特性[J].机械设计与制造,2018,10:63-66.
Wang Haiming, Mazhentao, Wang Ben, et al. Variation Tendency of Cutting Force in the Process of Drilling CFRP/Ti Stacks and the Vibration Characteristics[J]. Machinery Design & Manufacture, 2018, 10:63-66.
[10] Hocheng H, Tsao CC. The path towards delamination-free drilling of composite materials[J]. Mater Process Technol, 2005, 167(2–3):251–64.
[11] Isbilir O, Ghassemieh E. Comparative study of tool life and hole quality in drilling of CFRP/Titanium stack using coated carbide drill[J]. Machining Science and Technology, 2013, 17(3):380-409
[12] Sanda A, Arriola I, Navas V G. Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V[J]. Journal of Manufacturing Processes, 2016, 22: 169-176.
[13]陈硕,邹平,毛亮. 超声振动钻削切屑形成机理及实验研究[J].中国工程机械学报,2018,16(2):125-135.
Chen Shuo, Zou Ping, Mao Liang. Chip for mation mechanism and experimental study of ultrasonic vibration drilling[J]. Chinese journal of construction machinery, 2018,16(2):125-135.
[14] KUO Chunliang, LI Zhihao, WANG Chihying. Multi-objective optimisation in vibration-assisted drilling of CFRP /Al stacks[J].Composite Structures, 2017, 173:196-209
[15] 邵振宇,李哲,张德远,姜兴刚,秦威. 钛合金旋转超声辅助钻削的钻削力和切屑研究[J].机械工程学报,2017,Vol53:66-72.
Shao Zhenyu, Li Zhe, Zhang Deyuan, et al. Study on the Thrust Force and Chip in Rotary Ultrasonic-assisted Drilling of Titanium Alloys (Ti6Al4V) [J]. Journal of mechanical engineering, 2017, Vol53:66-72.
[16] Peace Y Onawumi, Anish Roy, Vadim V Silberschmidt , Eleanor Merson. Ultrasonically assisted drilling of aerospace CFRP/Ti stacks[J]. Procedia CIRP 77, 2018, 383–386
[17] AZARHOUSHANG B,AKBARI J. Ultrasonic-assisted drilling of Inconel 738-LC[J]. International Journal of Machine Tools and Manufacture, 2007,47(7-8):1027-1033.
[18] 唐军,赵波. 基于异形砂轮的超声加工系统设计研究[J]. 振动与冲击,2018,37(18):132-137.
Tang Jun, Zhao Bo. Design of an ultrasonic machining system based on a special grinding wheel[J]. Journal of vibration and shock, 2018,37(18):132-137.
[19] 何玉辉,唐楚,唐进元等. 轴向超声振动辅助磨削的表面残余应力建模[J]. 振动与冲击,2017,36(22):185-191.
He Yuhui, Tang Chu, Tang Jinyuan, et al. Modeling of grinding surface residual stress assisted with axial ultrasonic vibration[J]. Journal of vibration and shock, 2017,36(22):185-191.
[20] 倪志福,陈璧光. 群钻——倪志福钻头[M]. 上海:上海科技出版社,1999.
Ni Zhifu, Chen Biguang. Masses drill--Ni Zhifu drill[M]. Shanghai, Shanghai Science and Technology Press,1999.
[21] S. S. Rao. 机械振动[M]. 李欣业,张明路,编译. 4版. 北京:清华大学出版社,2009.
S.S.Rao. Mechanical Vibration: 4th edition [M]. Li Xinye, Zhang Minglu. Beijing: Tsinghua University Press,2009.
[22] 刘佐民. 摩擦学理论与设计[M].武汉:武汉理工大学出版社,2009.
Liu Zuomin. Tribology theory and design[M]. Wuhan: Wuhan University of Technology Press,2009.
[23] 温诗铸,黄平. 摩擦学原理[M]. 北京:清华大学出版社,2002.
Wen Shizhu, Huang Ping. Principles of Tribology[M]. Beijing, Tsinghua University Press,2002.
[24] (英)摩尔. 摩擦学原理和应用[M].黄文治,谢振中,杨明安,译. 北京:机械工业出版社,1982,08.
D.F.Moore. Principles and application of tribology [M]. Huang Wezhi, Xie Zhenzhong, Yang Mingan. Beijing: Machinery Press, 1982,08.
[25] 王世清. 孔加工技术[M]. 北京:石油工业出版社,1993.
Wang Shiqing. Drilling technology[M]. Beijing: Petroleum Industry Press,1993.
[26] K.L.Johnson. 接触力学[M],徐秉业,罗学富,刘信声,等,译. 北京:高等教育出版社,1992.
K.L.Johnson. Contact mechanics[M]. Xu Bingye, Luo Xuefu, Liu Xinsheng, et al. Beijing: Higher Education Press,1992.

PDF(4209 KB)

Accesses

Citation

Detail

段落导航
相关文章

/