轴流式水轮机组振动传递路径分析

职保平1,2,尼玛2,秦净净1,于洋1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 64-69.

PDF(1441 KB)
PDF(1441 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 64-69.
论文

轴流式水轮机组振动传递路径分析

  • 职保平1,2,尼玛2,秦净净1,于洋1
作者信息 +

Transmission path analysis for vibration of axial flow turbine unit

  • ZHI Baoping1,2, NI Ma2, QIN Jingjing1, YU Yang1
Author information +
文章历史 +

摘要

轴流式机组的振动问题已成为影响其稳定运行的重要因素之一。为分析轴流式水轮发电机组的振动特性,从振动传导路径的角度出发,基于振动基本理论、一般概率摄动法、矩阵微分理论等方法,在建立合理简化模型的基础上,以区间参数表征各导轴承刚度等参数的不确定性,对水力激励的各主要振动传递路径进行理论分析和数值计算,最终在频域内给出振动路径传递率的梯度排序及其扰动范围。通过算例分析,验证了方法的可行性,为分析机组传递路径及振动控制等问题提供的技术支撑。

Abstract

Vibration problem of Axial flow turbine has become one of important factors affecting its stable operation. Here, from the angle of vibration transmission path, based on the basic theory of vibration, the general probability perturbation method, the matrix differential theory, etc., and a reasonable simplified model established, taking interval parameters to characterize the uncertainty of stiffness and other parameters of various guide bearings, theoretical analysis and numerical computation were performed for main vibration transmission paths of hydraulic excitation. Finally, vibration path transmission rates’ gradient sorting and their disturbance ranges were given in frequency domain. The feasibility of the proposed method was verified with an example analysis to provide a technical support for vibration transmission path analysis and vibration control of axial flow turbine units.

关键词

轴流式水轮机 / 传导路径 / 导轴承 / 区间参数

Key words

axial-flow turbine / transmission path / guide bearing / interval parameter

引用本文

导出引用
职保平1,2,尼玛2,秦净净1,于洋1. 轴流式水轮机组振动传递路径分析[J]. 振动与冲击, 2020, 39(17): 64-69
ZHI Baoping1,2, NI Ma2, QIN Jingjing1, YU Yang1.
Transmission path analysis for vibration of axial flow turbine unit
[J]. Journal of Vibration and Shock, 2020, 39(17): 64-69

参考文献

[1] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018(1):176-188.
Lian J J, Yan X,LiuF.Development and prospect of study on the energy harness of flow-induced motion [J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1):176-188. (in Chinese)
[2] Chen H X, Ma Z, Zhang W, et al. On the hydrodynamics of hydraulic machinery and flow control [J]. Journal of Hydrodynamics, 2017, 29(5):782-789.
[3] 王海军, 李康, 练继建. 基于数据融合和LMD的厂房结构动参数识别研究[J]. 振动与冲击, 2018(2): 175-181.
Wang H J, Li K, Lian J J. Dynamic parametric identification for a hydropower house based on data fusion and LMD [J]. Journal of vibration and shock, 2018, 37(2):175-181. (in Chinese)
[4] 胡剑超, 练继建, 马斌,等. 基于CEEMD和小波包阈值的组合降噪及泄流结构的模态识别方法[J]. 振动与冲击, 2017, 36(17):1-9.
Hu J C, Lian J J, Ma B, A de-noising and modal identification combined method based on CEEMD and wavelet packet threshold for flood discharge structures [J], Journal of vibration and shock, 2017, 36(17):1-9. (in Chinese)
[5] 孟凡, 裴吉, 李彦军,等. 基于流固耦合的双向流道轴流泵装置振动特性研究[J]. 中国农村水利水电, 2016(12):180-184.
Meng F, Fei J, Li Y J, The Stress and Deformation on Impeller of Pumping Stations with
Two-Way Passages Based on Fluid-Structure Interaction [J], China Rural Water and Hydropower, 2016(12):180-184. (in Chinese)
[6] 杨建东, 胡金弘, 曾威,等. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报, 2016, 47(7):858-864.
Yang J D, Hu J H, Zeng W, Transient pressure pulsations of prototype Francis pump-turbines [J], Shui Li XueBao, 2016, 47(7):858-864. (in Chinese)
[7] 周建中, 武越越, 许颜贺,等. 抽水蓄能机组导叶关闭策略优化方法研究[J]. 华中科技大学学报(自然科学版), 2017, 45(12):123-127.
Zhou J Z, Wu Y Y, Xu Y H, Research on optimization method of pumped-storage units guide vane closing law [J], J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2017, 45(12):123-127. (in Chinese)
[8] 王海军, 涂凯, 练继建. 基于结构声强的水电站厂房振动传递路径研究[J]. 水利学报, 2015, 46(10):1247-1252.
Wang H J,Tu K,Lian J J. Research on transfer path of vibrations of hydropower house based on structural intensity [J]. ShuiLiXueBao, 2015, 46(10):1247-1252. (in Chinese)
[9] 张燎军, 魏述和, 陈东升. 水电站厂房振动传递路径的仿真模拟及结构振动特性研究[J]. 水力发电学报, 2012, 31(1):108-113.
Zhang L J, Wei S H, Chen D S. Simulation of transmission path and study on structural vibrations of hydropower house [J]. Journal of Hydroelectric Engineering, 2012, 31(1):108-113. (in Chinese)
[10] Xiao N, Muhanna R L, Fedele F, Mullen R L. Uncertainty Analysis of Static Plane Problems by Intervals [J]. Sae International Journal of Materials & Manufacturing, 2015, 8(2):374-381.
[11] Gao W, Zhang Z, Ji H, Zhou Y, Liu Q. Optimal quasi-periodic preventive maintenance policies for a repairable system with stochastic maintenance interval [J]. EksploatacjaiNiezawodnosc- Maintenance and Reliability, 2015, 17(3):389-397.
[12] 陈正寿, 张国辉, 刘羽,等. 轴流式水轮机导流罩与叶轮尾流流场仿真研究[J]. 水动力学研究与进展, 2016, 31(1):90-98.
Chen Z S, Zhang G H, Liu Y, Numerical analysis of flow inside and behind diffuser concerning an axial-flow tidal current turbine [J], Chinese Journal of Hydrodynamics, 2016, 31(1):90-98. (in Chinese)
[13] 赵亚萍, 廖伟丽, 阮辉,等. 轴流式水轮机叶片几何参数对水轮机运行范围的影响[J]. 水力发电学报, 2014, 33(5):192-197.
Zhao Y P, Liao W L, Ruan H,Effect of geometric parameters of blade on operating scopes of Kaplan turbine [J], Journal of hydroelectric engineering, 2014, 33(5):192-197. (in Chinese)
[14] 朱尧华. 轴流式水轮机叶片翼型参数化设计研究[D]. 江苏大学, 2016.
Zhu R H,Research on parametric design of a Kaplan turbine airfoil and blade [D], JiangSu University, 2016. (in Chinese)
[15] 甘洪丰. 大型轴流式水轮机座环装配焊接工艺[J]. 电机技术, 2014(6):57-59.
Gan H F, Assembly and Welding Procedure for Seating Ring of Large- Size Axial Flow Hydraulic Turbine [J], Mechanical & Electrical Technology, 2014(6):57-59. (in Chinese)
[16] 郭书祥, 吕震宙. 区间运算和静力区间有限元[J]. 应用数学和力学, 2001, 22(12): 1249-1254.
Guo S X, Lv Z Y. Interval arithmetic and static interval finite element method [J]. Applied mathematics and mechanics, 2001, 22(12): 1249-1254. (in Chinese)
[17] 职保平, 周志琦, 李颖,张宏战. 基于区间参数的水电机组振动传导研究[J]. 振动与冲击, 2017, 36(7):21-25.
Zhi B P, Zhou Z Q, Li Ying, Zhang H Z. Vibration path transmissibility analysis for hydropower stations based on interval parameters [J]. Journal of Vibration and Shock, 2017, 36(7):21-25. (in Chinese).
[18] 职保平, 王宇, 秦净净,于洋,张宏战. 基于二阶摄动的水电机组振动传导研究[J]. 振动与冲击, 2019, 38(4): 45-49.
Zhi B P, Wang Y, Qin J J, Yu Y, Zhang H Z.Research of the hydropower station units’ vibration based on the second-order perturbation [J]. Journal of Vibration and Shock, 2019, 38(4): 45-49. (in Chinese).
 

PDF(1441 KB)

Accesses

Citation

Detail

段落导航
相关文章

/