假定滑面正应力分布为含有待定参数的修正函数。根据爆破地震动荷载作用下边坡的力和力矩平衡方程,推导出爆破地震动荷载方向及强度与边坡安全系数的关系,并通过工程实例验证计算方法的可行性。研究结果表明:相同荷载强度下,爆破地震动荷载最危险作用方向为180°,此方向边坡安全系数最小;当爆破地震动荷载方向与水平轴正方向夹角为0°~180°时,边坡安全系数逐渐减小;当爆破地震动荷载方向与水平轴正方向夹角为180°~360°时,边坡安全系数逐渐增大;当爆破地震动荷载方向与水平轴正方向夹角为0°~90°或270°~360°时,随着爆破地震动强度的增加,安全系数逐渐增加;当爆破地震动荷载方向与水平轴正方向夹角为90°~270°时,随着爆破地震动强度的增加,安全系数逐渐减小。
Abstract
Here, normal stress distribution on a sliding surface was assumed to be a modification function with parameters to be determined. According to a slope’s force and moment equilibrium equations under action of blast seismic dynamic load, the relation among blast seismic dynamic load direction, its intensity and slope safety factor was derived, and the feasibility of the proposed calculation method was verified with engineering actual examples. Results showed that under the same load intensity, the most dangerous acting direction of blast seismic dynamic load is 180°, slope safety factor in this direction is the minimum; under the same load intensity, when angle between blast seismic dynamic load direction and positive direction of horizontal axis is 0°-180°, slope safety factor gradually decreases; under the same load intensity, when angle between blast seismic dynamic load direction and positive direction of horizontal axis is 180°-360°, slope safety factor gradually increases; when angle between blast seismic dynamic load direction and positive direction of horizontal axis is 0°-90° or 270°-360°, with increase in blast seismic dynamic load intensity, slope safety factor gradually increases; when angle between blast seismic dynamic load direction and positive direction of horizontal axis is 90°-270°, with increase in blast seismic dynamic load intensity, slope safety factor gradually decreases.
关键词
爆破地震动荷载方向 /
爆破地震动荷载强度 /
边坡稳定性 /
拟静力系数 /
边坡安全系数
{{custom_keyword}} /
Key words
blast seismic dynamic load direction /
blast seismic dynamic load intensity /
slope stability /
pseudo-static coefficient /
slope safety factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]刘新荣,邓志云,刘永权,刘树林,路雨明.地震作用下水平层状岩质边坡累积损伤与破坏模式研究[J].岩土力学,2019,40(7):1-11.(LIU Xinrong,DENG Zhiyun,LIU Yongquan,LIU SHUlin, LU Yuming.Study on cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads[J].Rock and Soil Mechanics, 2019,40(7):1-11. (in chinese).)
[2]陈祖煜.土质边坡稳定分析:原理•方法•程序 [M]. 北京:中国水利水电出版社,2003:42- 56.(CHEN Zhuyu. Soil slope stabilityanalysis-Theory, methods and programs[M]. Beijing:China WaterPower Press,2003:42-56.(in Chinese))
[3]杨忠平,刘树林, 刘永权, 等. 反复微震作用下顺层及反倾岩质边坡的动力稳定性分析[J]. 岩土工程学报,2018,40(7):1277-1286.(YANG Zhong-ping, LIU Shu-lin, LIU Yong-quan, et al.Dynamic stability analysis of bedding and toppling rockslopes under repeated micro-seismic action[J]. ChineseJournal of Geotechnical Engineering, 2018, 40(7): 1277-1286. (in Chinese))
[4]刘汉龙,费 康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-560.(LIU Hanlong,FEI Kang,GAO Yufeng.Time history analysis method of slope seismic stability[J]. Rock and Soil Mechanics. 2003,24(4):553-560. (in chinese).)
[5]BRAYJONATHAN D. REPETTO PEDRO C. Seismic design considerations for lined solid waste landfills [J] .Geotextiles and Geomembranes. Elsevier Applied Science Pub- Ltd 1994,13(8):497-518.
[6]LINGHOE I, CHENG, ALEXANDER HD. Rock Sliding Induced by Seismic Force.[J] . International Journal of Rock Mechanics and Mining Sciences. Elsevier Science Ltd 1997,34 (6):1021-1029.
[7]AUSILIO E, CONTE E, DENTE G. Seismic Stability Analysisof Reinforced Slopes, Soil Dynamics and Earthquake Engineering, [J] Elsevier Science Ltd,2000,19(3):159_172.
[8]Terzaghi, K.. Mechanism of landslide[J]. In: From theory to practice in soil mechanics,1950:202-245.
[9]卞康,刘建,胡训健,等.含顺层断续节理岩质边坡地震作用下的破坏模式与动力响应研究[J].岩土力学,2018, 39(8): 3029-3037.(BIAN Kang, LIU Jian, HU Xun-jian, et al. Study onfailure mode and dynamic response of rock slope withnon-persistent joint under earthquake[J]. Rock and SoilMechanics, 2018, 39(8): 3029-3037.(in chinese).)
[10] 刘 杰,李建林,王乐华,等.三种边坡安全系数计算方法对比研究 [J]. 岩石力学与工程学报,2011,30(5) : 2896- 2 903.(LIU Jie,LI Jianlin,WANG Lehua ,et al. Comparative study of three calculation methods for slope factor of safety[J]. Chinese Journal of Rock Mechanics and Engineering ,2011 , 30(5) : 2 896 _2 903.(in Chinese)).
[11]. 杜时贵. 大型露天矿山边坡稳定性等精度评价方法[J]. 岩石力学与工程学报,2018.37(6):1301-1331. (DU Shigui. Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes[J]. Chinese Journal of Rock Mechanics and Engineering. 2018,37(6):1301-1331. (in Chinese)).
[12] 杨国香,伍法权,董金玉等.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报, 2012,31(4):696-702.(YANG Guoxiang,WU Faquan, DONG Jinyu,etal.Study of dynamic response characters and failuremechanism of rock slope under earthquake[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):696-702. (in chinese).)
[13] Zhu, D.Y, Lee, C.F. Explicit Limit Equilibrium Solution for Slope Stability. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26,1573_1590.
[14]刘华丽,朱大勇等.边坡安全系数的多解性讨论[J].岩
土力学.2007,28(8):1661-1664.(LIU Huali,ZHU Dayong. Discussion on multiple solution of safety factor of a slope[J]. Rock and Soil Mechanics. 2007,28(8):1661-1664.(in chinese).)
[15] Bishop, A.W. The use of the slip circle in the stability analysis of earth slopes[J]. Geotechnique 1955,5(1): 7-17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}