小半径竖曲线上磁浮车辆空气弹簧动态响应分析

罗英昆1,赵春发1,梁鑫2,冯洋1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 99-105.

PDF(1268 KB)
PDF(1268 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (17) : 99-105.
论文

小半径竖曲线上磁浮车辆空气弹簧动态响应分析

  • 罗英昆1,赵春发1,梁鑫2,冯洋1
作者信息 +

Dynamic responses of air-spring suspension of a maglev vehicle negotiating a small-radius vertical curved track

  • LUO Yingkun1, ZHAO Chunfa1, LIANG Xin2, FENG Yang1
Author information +
文章历史 +

摘要

以某高速常导磁浮车辆新型悬浮架为研究对象。建立了包括非线性空气弹簧模型和主动电磁悬浮控制的磁浮车辆动力学模型,模拟计算了车辆低速通过小半径凸竖曲线时的动力学响应,并与采用空气弹簧线性等效模型的计算结果进行了对比。结果表明,基于空气弹簧等效模型和非线性模型得到的车体和电磁铁动态响应差别不大,但空气弹簧等效模型的伸缩量计算值显著小于非线性空气弹簧模型;磁浮车辆单侧8个空气弹簧的垂向伸缩变形、橡胶气囊内压变化和垂向力变化规律符合线性关系,基于空气弹簧非线性模型的仿真结果为高速磁浮车辆二系悬挂系统设计提供了依据。

Abstract

Combining with R&D of a new levitation frame of EMS high-speed maglev, a maglev vehicle dynamic model including non-linear air-spring models and active electromagnetic controllers was established. With this model, dynamic responses of a maglev vehicle negotiating a small-radius vertical curved track at lower speed were simulated, and the results were compared to those adopting linear equivalent air-spring models. Results showed that there is no big difference between dynamic responses of car-body and electromagnet with linear equivalent air-spring models and non-linear air-spring ones, but the calculated expansion-contraction amount of linear equivalent air-spring model is significantly less than that of non-linear air-spring one; variation laws of vehicle unilateral 8 air springs’ vertical expansion-contraction deformation, rubber air bag inner pressure and vertical force conform to linear relationship; the simulation results based on nonlinear air-spring models can provide a basis for the design of secondary suspension system of high-speed maglev.

关键词

磁浮车辆 / 空气弹簧悬挂 / 动态曲线通过

Key words

maglev vehicle / air spring suspension / dynamic curve negotiation

引用本文

导出引用
罗英昆1,赵春发1,梁鑫2,冯洋1. 小半径竖曲线上磁浮车辆空气弹簧动态响应分析[J]. 振动与冲击, 2020, 39(17): 99-105
LUO Yingkun1, ZHAO Chunfa1, LIANG Xin2, FENG Yang1. Dynamic responses of air-spring suspension of a maglev vehicle negotiating a small-radius vertical curved track[J]. Journal of Vibration and Shock, 2020, 39(17): 99-105

参考文献

[1] Docquier N, Fisette P, Jeanmart H. Multiphysic modeling of railway vehicles equipped with pneumatic suspension [J]. Vehicle System Dynamics, 2007, 45(6): 505-524.
[2] Nieto A J, Morales A L, Gonzalez A, et al. An analytical model of pneumatic suspensions [J]. Journal of Sound and vibration, 2008, 313(1-2): 290-307.
[3] 原亮明, 宫相太, 王渊, 等. 铁道车辆空气弹簧-可变节流阀垂向动态特性的研究[J]. 铁道学报, 2005, 27(1): 40-44.
YUAN Liangming, GONG Xiangtai, WANG Yuan, et al. Research on Vertical Dynamic Character of Airspring-variable Throttle System for Railway Vehicle[J]. Journal of the China Railway Society, 2005, 27(1):40-44.
[4] 高红星, 池茂儒, 朱旻昊, 等. 空气弹簧模型研究[J]. 机械工程学报, 2015, 51(4): 108-115.
GAO Hongxing, CHI Maoru, ZHU Minhao, et al. Study on Air Spring Model[J]. Journal of Mechanical Engineering, 2015, 51(4): 108-115.
[5] Facchinetti A, Mazzola L, Stefano A, et al. Mathematical modelling of the secondary airspring suspension in railway vehicles and its effect on safety and ride comfort[J]. Vehicle System Dynamics, 2010, 48(S1): 429-449.
[6] Bruni S, Vinolas Jordi, Polach O, et al. Modelling of suspension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49(7), 1021–1072.
[7] Mazzola L, Berg M. Secondary suspension of railway vehicles - air spring modelling: performance and critical issues [J]. Journal of Rail & Rapid Transit, 2014, 228(3): 225-241.
[8] 戚壮, 李芾, 黄运华, 等. 高速列车系统动力学空气弹簧建模方法研究[J]. 振动与冲击, 2014, 33(12): 63-68.
QI Zhuang, LI Fu, HUANG Yunhua, et al. Modeling Methods of Air Spring in System Dynamics of A High-speed EMU[J]. Journal of Vibration and Shock, 2014, 33(12): 63-68.
[9] 戚壮, 李芾, 黄运华, 等. 高速动车组空气弹簧垂向动态特性研究[J]. 机械工程学报, 2015, 51(10): 129-136.
QI Zhuang, LI Fu, HUANG Yunhua, et al. Study on the Vertical Dynamic Characteristics of Air Spring Used in High-speed EMU[J]. Journal of Mechanical Engineering, 2015, 51(10): 129-136.
[10] 赵春发, 翟婉明. 磁浮车辆/轨道系统动力学(II): 建模与仿真[J]. 机械工程学报, 2005, 41(8):163-175.
ZHAO Chunfa, ZHAI Wanming. Maglev Vehicles/Track System Dynamics(II): Modeling and Simulation[J]. Journal of Mechanical Engineering, 2005, 41(8):163-175.
[11] Lee J S, Kwon S D, Kim M Y, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges[J]. Journal of Sound and Vibration, 2009, 328(3): 301–317.
[12] 任晓博, 赵春发, 冯洋, 等. 中低速磁浮车辆-轨道-桥梁垂向耦合振动仿真分析[J]. 铁道标准设计, 2019, 63(2): 70-76.
REN Xiaobo, ZHAO Chunfa, FENG Yang, et al. Numerical Analysis on Vertical Coupled Vibration of Medium-low speed Maglev Vehicle-Track-Viaduct System[J]. Railway Standard Design, 2019, 63(2): 70-76.
[13] 吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003.
WU Xiangming. Maglev Train[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2003.

PDF(1268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/