桨叶弹性对螺旋桨轴承力影响及计算方法研究

李家盛1,2,3,4,张振果2,3,田锦5,华宏星2,3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 1-10.

PDF(1866 KB)
PDF(1866 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (18) : 1-10.
论文

桨叶弹性对螺旋桨轴承力影响及计算方法研究

  • 李家盛1,2,3,4,张振果2,3,田锦5,华宏星2,3
作者信息 +

Mechanism of fluid-structure interaction and algorithm for calculating the bearing force of elastic propellers

  • LI Jiasheng1,2,3,4,ZHANG Zhenguo2,3,TIAN Jin5,HUA Hongxing2,3
Author information +
文章历史 +

摘要

螺旋桨水弹性问题研究对于船舶减振降噪及水弹性力学发展具有重大意义。全文围绕螺旋桨流体激励特性开展流固耦合机理与计算方法研究。提出了一种基于时域面元计算刚体桨非均匀流中旋转所受流体力、频域面元计算弹性桨均匀流中振动所受流体力、有限元求解结构动力学的弹性桨双向流固耦合非定常水动力预报算法——时域/频域面元-有限元法,可克服频域面元-有限元法非线性伯努利方程难处理及时域面元-有限元法低效率问题。研究表明:桨弹性效应特别是流体附加阻尼在桨-轴-船系统减振降噪设计中应予以足够重视。空间不均匀来流下弹性桨轴承力计算可在平衡位置表面施加不可穿透条件。研究方法和结果可为低噪声桨-轴-船系统设计提供必要的理论参考。

Abstract

The study on hydroelastic problems of propellers is of great importance for the vibration/noise reduction of ships. Two-way strongly coupled fluid-structure interaction model for elastic propellers is established. A three-dimensional panel method in time and frequency domains for fluid combined with the finite element method for the structures is developed. The proposed method can solve the full nonlinear Bernoulli formula to determine the driving force directly, which overcomes the disadvantages of the coupled frequency-dependent panel/finite element method. In addition, the computational cost required by the present method is considerable smaller than that of the coupled time-dependent panel/finite element method. It is found that the added-damping due to the fluid are crucial importance in the design of propeller-shaft-ship system. It is also observed that the non-penetration conditions may be imposed on the undeformed surface of the propellers to predict the unsteady bearing forces in the spatially non-uniform inflow.

关键词

流固耦合/水弹性 / 振动 / 螺旋桨 / 有限元法 / 面元法/边界元法

Key words

 fluid-structure interaction/hydroelasticity / vibration / propeller / finite element method / panel method/ boundary element method

引用本文

导出引用
李家盛1,2,3,4,张振果2,3,田锦5,华宏星2,3. 桨叶弹性对螺旋桨轴承力影响及计算方法研究[J]. 振动与冲击, 2020, 39(18): 1-10
LI Jiasheng1,2,3,4,ZHANG Zhenguo2,3,TIAN Jin5,HUA Hongxing2,3. Mechanism of fluid-structure interaction and algorithm for calculating the bearing force of elastic propellers[J]. Journal of Vibration and Shock, 2020, 39(18): 1-10

参考文献

[1]  Maljaars P J, Kaminski M L. Hydro-elastic analysis of flexible propellers : an overview [C]. Fourth International Symposium on Marine Propulsors. Austin, Texas, USA, 2015(6).
[2] Tsushima H, Sevik M. Dynamic response of marine propellers to nonuniform flowfields [J]. Journal of Hydronautics, 1973(4): 71–77.
[3] Kuo J, Vorus W. Propeller blade dynamic stress [C]. Tenth Ship Technology and Research (STAR) Symposium. Norfolk: 1985: 39–69.
[4] Suo Z, Guo R. Hydroelasticity of rotating bodies—theory and application [J]. Marine Structures, 1996, 9(6): 631–646.
[5] Lin H J, Tsai J F. Analysis of underwater free vibrations of a composite propeller blade [J]. Journal of Reinforced Plastics & Composites, 2008, 27(5): 447–458.
[6] Young Y L. Time-dependent hydroelastic analysis of cavitating propulsors [J]. Journal of Fluids and Structures, 2007, 23(2): 269–295.
[7] Young Y L. Fluid-structure interaction analysis of flexible composite marine propellers [J]. Journal of Fluids and Structures, 2008, 24(6): 799–818.
[8] Neugebauer J, Abdel-maksoud M, Braun M. Fluid-structure interaction of propellers [C], IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Springer Netherlands, 2008:191-204.
[9] Hong Y, He X D, Wang R G, et al. Dynamic responses of composite marine propeller in spatially wake [J]. Polymers & Polymer Composites ,2011, 19: 405–412.
[10] He X D, Hong Y, Wang R G. Hydroelastic optimisation of a composite marine propeller in a non-uniform wake [J]. Ocean Engineering, 2012, 39: 14–23.
[11] Lee H, Song M, Suh J, et al. Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm [J]. International Journal of Naval Architecture and Ocean Engineering, Society of Naval Architects of Korea, 2014, 6(3): 562–577.
[12] Lee H, Song M C, Han S, et al. Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods [J]. Journal of Marine Science and Technology, 2017, 22(3): 1–15.
[13] Clough R W, Penzien J. Dynamics of structures [M]. McGraw-Hill, New York: 2003.
[14] Li J, Qu Y, Hua H. Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm [J], Ocean Engineering, 2017, 146:  178–191
[15]  Li J, Rao Z, Su J, Qu Y, Hua H. A numerical method for predicting the hydroelastic response of marine propellers [J], Applied Ocean Research, 2018, 74: 188–204.
[16]  Morino L, Kuo C.-C. Subsonic Potential Aerodynamic for Complex Configurations: A General Theory [J]. AIAA Journal , 1974, 12 (2): 191–197.
[17] 谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究 [D]. 武汉理工大学, 2003.
Tan T. Performance prediction and theoretical design research on propeller in non-uniform flow [D]. Wuhan University of Technology, 2003.
[18]  Hoshino T. Hydrodynamic Analysis of Propellers in Steady Flow Using a Surface Panel Method [J]. Journal of the Society of Naval Architects of Japan, 1989, 165: 55-70.
[19]  Hess J L, Smith A M O. Calculation of Non-Lifting Potential Flow about Arbitrary Three-Dimensional Bodies [J]. The Journal of Ship Research, 1964, 8: 22–44.
[20]  Hess J L, Smith A M O. Calculation of Potential Flow about Arbitrary Bodies [J]. Progress in Aeronautical Sciences, 1967, 8: 1–138.
[21] 陈材侃. 计算流体力学 [M]. 重庆出版社.
Chen C. Computational Fluid Dynamics [M]. Chongqing Publishing House.
[22] 张义民. 机械振动 [M]. 北京: 清华大学出版社, 2007.
Zhang Y. Mechanical Vibration [M]. Beijing: Tsinghua University Press, 2007.
[23] Tian J, Croaker P, Li J, et al. Experimental and numerical studies on the flow-induced vibration of propeller blades under nonuniform inflow [J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2016, 231(2).
[24] Tian J, Zhang Z, Ni Z, et al. Flow-induced vibration analysis of elastic propellers in a cyclic inflow: an experimental and numerical study [J]. Applied Ocean Research, 2017, 65: 47–59.
[25] Groves N C, Huang T T, Chang M S. Geometric characteristics of DARPA Suboff models [R]. 1989.
[26]  Kerwin J E, Lee C-S. Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting-Surface Theory [J]. SNAME Transactions, 1978, 86: 218–53.
[27]  Greeley D S, Kerwin J E. Numerical Methods for Propeller Design and Analysis in Steady Flow [J]. SNAME Transactions, 1982, 90: 415–53.
[28] Li J, Qu Y, Hua H. Numerical analysis of added mass and damping of elastic hydrofoils [J], Journal of Hydrodynamics, Ser. B, (2017). [accepted]

PDF(1866 KB)

Accesses

Citation

Detail

段落导航
相关文章

/